期刊文献+

基于预条件Lanczos算法的结构拓扑修改静态重分析方法 被引量:8

New method for structural static reanalysis of topological modifications based on preconditioning Lanczos algorithm
下载PDF
导出
摘要 提出了一种新的结构拓扑修改静态重分析方法。该方法易于实现并且适用于拓扑修改中的3种情况:自由度不变化;自由度减少;自由度增加。根据初始分析结果,对拓扑修改的3种情况分别选取了适当的预条件子,应用Lanczos迭代算法得到拓扑修改后结构响应。将此算法与直接Lanczos算法分别应用于数值算例,比较了预条件前后迭代收敛速度。应用本文提出的方法计算成本显著降低,计算结果显示了该算法的正确性和有效性。 A new method for structural static reanalysis of topological modifications was presented.The proposed procedure was easy to implement and suit for three cases of modifications: the number of Degree of Freedom (DOFs) is unchanged; the number of DOFs is decreased; the number of DOFs is increased. According to the analysis result of original system, three suitable preconditioner were selected and the response of modified structure was gained by Lanczos algorithm. Both the present method and the Lanczos algorithm without preconditioning were applied to numerical examples, respectively. The Convergence of the two methods were compared. The computational cost is significantly reduced by the proposed method. The numerical results show the exactitude and effectiveness of the reanalysis algorithm.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2007年第5期1214-1219,共6页 Journal of Jilin University:Engineering and Technology Edition
基金 高等学校博士学科点专项科研基金资助项目(20050183018) 吉林大学'985工程'资助项目
关键词 固体力学 拓扑修改 结构静态重分析 LANCZOS算法 有限元系统 solid-state mechanics topological modifications structural static reanalysis Lanczos algorithm finite element systems
  • 相关文献

参考文献16

  • 1Bendsoe M P,Kikuchi N.Generating optimal topologies in structural design using a homogenization method[J].Comp Meth Appl Mech Engrg,1988,71(1):197-224.
  • 2Xie Y M,Steven G P.A simple evolutionary procedure for structural optimization[J].Comput Struct,1993,49:885-896.
  • 3Kirsch U,Kocvara M,Zowe J.Accurate reanalysis of structures by a preconditioned conjugate gradient method[J].Int J Numer Meth Engng,2002,55:233-251.
  • 4Kirsch U,Moses F.An improved reanalysis method for grillage-type structures[J].Computers and Structures,1998,68:79-88.
  • 5Akgün M A,Garcelon J H,Haftka Raphael T.Fast exact linear and non-linear structural reanalysis and the Sherman-Morrison-Woodbury formulas[J].Int J Numer Meth Engng,2001,50:1587-1606.
  • 6Bae Ha-Rok,Grandhi Ramana V,Canfield Robert A.Accelerated engineering design optimization using successive matrix inversion method[J].Int J Numer Meth Engng,2006,66:1361-1377.
  • 7Kirsch U.Combined approximations-a general reanalysis approach for structural optimization[J].Struct Multidisc Optim,2000,20:97-106.
  • 8Kirsch U.Reduced basis approximations of structural displacements for optimal design[J].AIAA J,1991,29:1751-1758.
  • 9Kirch U,Paralambros P Y.Structural reanalysis for topological modification-a unified approach[J].Structural and Multidisciplinary Optimization,2001,21:333-344.
  • 10杨志军,陈塑寰,吴晓明.结构静态拓扑重分析的迭代组合近似方法[J].力学学报,2004,36(5):611-616. 被引量:14

二级参考文献13

  • 1Liu ZS, Chen SH. Reanalysis of static response and its design sensitivity of locally modified structures. Communications in Numerical Methods in Engineering, 1992, 8:797~800
  • 2Noor AK. Recent advances and applications of reduction methods. Applied Mechanics Reviews, 1994, 47(5):125~146
  • 3Rozvany GIN, Bendose MP, Kirsch U. Layout optimization of structure. Applied Mechanics Reviews, 1995, 48(2):41~118
  • 4Liang P, Chen SH, Huang C. Moor-Penrose inverse method of topological variation of finite element systems. Computers and Structures, 1997, 62:243~251
  • 5Lian HD, Yang XW, Chen SH. Two-step method for static topological reanalysis. AIAA Journal, 2002, 40(1):172~174
  • 6Chen SH, Huang C, Liu ZS. Structural approximate reanalysis for topological modifications of finite element systems.AIAA Journal, 1998, 36(9): 1760~1762
  • 7Kirsch U, Liu S. Structural reanalysis for general layout modifications. AIAA Journal, 1997, 35(2): 382~388
  • 8Abu Kasim AM, Topping BHV. Static reanalysis: A review. Journal of Structural Engineering, 1987, 113(6):1029~1045
  • 9Kirsch U. Combined approximations-a general approach for structural optimization. Struct Multidisc Optim, 2000, 20:97~106
  • 10Kirsch U. Efficient reanalysis for topological optimization.Structural Optimization, 1993, 6:143~150

共引文献13

同被引文献77

引证文献8

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部