摘要
通过将动力学演化算法(Dynamical Evolutionary Algorithm,DEA)与一种随机优化方法——Alopex算法相结合,提出一种改进的动力学演化算法。改进的算法改善了动力学演化算法摆脱局部极小点的能力,对典型函数的测试表明:改进算法的全局搜索能力有了显著提高,特别是对多峰函数能够有效地避免早熟收敛问题。
A stochastic optimization algorithm is proposed by combining dynamical evolutionary algorithm(DEA) with Alopex algorithm that is a stochastic optimization method . The proposed algorithm improves the ability of breaking away from local minima. The experiment results demonstrate that the proposed algorithm is superior to the original dynamical evolutionary algorithm ,especially multi-apices function.
出处
《电脑开发与应用》
2007年第11期2-4,7,共4页
Computer Development & Applications
基金
武汉科技大学青年基金资助项目(No.2006XY22)
关键词
动力学演化算法
ALOPEX
进化计算
dynamical evolutionary algorithm,Alopex,evolutionary computation