摘要
决策树和人工神经网络是数据挖掘分类任务中两项重要技术,各具特点,对不同的数据类型应采用不同的算法进行相应的研究应用。为了深入地说明各自的特点,根据决策树C 4.5算法的原理和流程,以及人工神经网络的BP网络模型原理和实现分类的流程,并应用具体的实例,对两种技术进行了对比分析研究,得出并验证了它们在实现分类中的一些性能差异。
Decision Trees and Artificial Neural Networks are two important technologies of Data Mining in data classification. They have different characteristics of their own, so we should use different algorithms with different data types for application and researches. To explain their own characteristic concretely, this paper studies and analyses in contrast, get and prove some performance differences in data classification, by C4.5 Algorithm and BP Neural Network.
出处
《电脑开发与应用》
2007年第11期13-15,共3页
Computer Development & Applications
基金
山西省科技厅自然科学基金项目(20060110035)资助
关键词
决策树
人工神经网络
C4.5算法
BP网络模型
分类
decision trees,artificial neural networks,C4.5 Algorithm,BP Neural network,classification