期刊文献+

MIMO系统转化为Luenberger能控规范型的条件 被引量:2

Restraint on MIMO system in being transformed into the Luenberger’s canonical form
下载PDF
导出
摘要 线性系统化为Luenberger能控规范型后可以很方便地进行极点配置.本文证明,在完全能控的情况下,MIMO系统能否化为Luenberger能控规范型与系统的最大能控性指数和最小能控性指数之差有关.如果两者之差大于1,就可能在控制矩阵B中除第l行(l=sum from i=1 to m μi,1≤m≤r)以外的位置上出现非零元.结果表明,用Luenberger能控规范型方法进行极点配置有一定的局限性. Pole assignment can be readily implemented after the linear system is transformed into the Luenberger's canonical form. It is proved that the difference between the maximal and the minimal controllability indices is the essential condition to ensure that whether a controllable MIMO system can be transformed into the Luenberger's canonical form or not. If the difference is greater than 1, non-zero elements may then appear in the control matrix B except at the row l(l=^m∑i=1 μi,1≤m≤r).The result also shows the restraint of this method in pole assignment.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2007年第5期866-868,共3页 Control Theory & Applications
关键词 线性系统 能控规范型 极点配置 能控性指数 linear system controllable canonical form pole assignment controllability index
  • 相关文献

参考文献6

  • 1KAILATH T. Linear Syetems[M]. Englewood Cliffs: Prentice-Hall, 1980.
  • 2LUENBERGER D G. Canonical forms for linear multivariable systems[J]. IEEE Trans on Automaac Control, 1967, 12(3): 290 - 293.
  • 3LUO Z.Transformations between canonical forms for multivariable linear constant systems[J]. IEEE Trans on Automatic Control, 1977, 22(2): 252 - 256.
  • 4JORDKY D, SRIDHAR B. An efficient algorithm for calculation of the Luenberger canonical form[J]. IEEE Trans on Automatic Control, 1973, 18(3): 292 - 295.
  • 5GUPTA R D, FAIRMAN F W. Luenberger's canonical form revisited[J]. IEEE Trans on Automatic Control, 1974, 19(4): 440 - 441.
  • 6WANG L F.Fault-tolerent design in a networked vibration control system[C]//Proc of the 29th IEEE Conf lndustrial Electronics Society. [S.l.]: [s.n.], 2003, 3:2823 - 2828.

同被引文献18

  • 1高遵海,陈绵云,叶佩.多输入系统能控规范型的改进算法[J].科学技术与工程,2006,6(7):814-816. 被引量:2
  • 2刘豹,唐万生.现代控制理论[M].2版.北京:机械工业出版社,2005.
  • 3Luenberger D G. Canonical forms for linear multivariable systems [ J ]. IEEE Transactions on Automatic Control,1967,12(3) :290 -293.
  • 4Luenberger D G. Observers for multivariable systems [J]. IEEE Transactions on Automatic Control, 1966, 11(2) :190-197.
  • 5Luenberger D G. An introduction to observers[J]. IEEE Transactions on Automatic Control, 1971,16 (6) : 596-603.
  • 6Kalman R E. Canonical structure of linear dynamic systems[J]. Proceedings of the National Academy of Sciences of United States of America, 1962, 48 (4): 596-600.
  • 7Kalman R E,Ho Y C,Narendra K S. Controllability of linear dynamical systems [ J ]. Contributions to Differential Equations, 1961,1(3) : 189- 213.
  • 8Kalman R E. Mathematical descriptions of linear dynamical systems [J]. Journal of the Society for Industrial and Applied Mathematics, Series A : Control, 1963,1(2) :152-192.
  • 9Gilbert E. Controllability and observability in multlvanable control systems[J], journal oi me Soclety for Industrial and Applied Mathematics, Series A: Control, 1963,2(1) : 128-151.
  • 10Morgan B S, Jr. The synthesis of linear multivariable systems by state-variable feedback [J]. IEEE Transactions on Automatic Control, 1964, 9 (4): 405- 411.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部