期刊文献+

贝叶斯网络在适应性教学系统中的应用研究 被引量:1

Application Research of Bsyesisn Network in Adaptability Teaching System
下载PDF
导出
摘要 在适应性教学系统中,研究如何设计学生模型来实现教学的个性化和适应性有着重要的意义。运用贝叶斯网络构建学生模型,实验表明,基于贝叶斯网络构建的适应性教学系统能够有效地提供适应性的教学资源,从而有助于实现教学平台的适应性学习。 In the adaptability teaching system,it has important meaning to research how to design and use student model to realize the personalization of teaching with adaptability.This paper utilize Bayesian network to build student model.Experiment shows that the adaptability teaching system based on Bayesian network can offer the teaching resource of adaptability and it is helpful to realize the adaptability learning of teaching platform.
出处 《山西电子技术》 2007年第5期58-60,共3页 Shanxi Electronic Technology
关键词 适应性教学 学生模型 贝叶斯网络应用 adaptability teaching student model application of Bayesian network
  • 相关文献

参考文献2

二级参考文献10

  • 1[1]Jameson A.Numerical uncertainty management in user and student modeling:an overview of systems and issues[J].User Modeling and User-Adapted Interaction, 1995.5
  • 2[2]Conati C,Gertner A,VanLehn K et al. On-line student modeling for coached problem solving using Bayesian networks[C].In :A Jameson,C Paris,C Tasso Eds,User Modeling: Proceedings of the Sixth International conference, UM97,New York: Spring Wien, 1997
  • 3[3]Luckin R,du Boulay B.Capability,potential and collaborative assistance[C].Paper presented at the UM ′99:User Modeling,Banff,Canada, 1999
  • 4[4]Tversky,D Kabneman. Extensional versus intuitive reasoning:The conjunction fallacy in probability judgement[Jl.Psychological Review,1983; (4) :293-315
  • 5[5]Cooper G F,Herskovits E.A Bayesian Method for the induction of probabilistic networks from data[J].Machine Learning,1992;(9)309-347
  • 6[6]Herskovits E.Computer-besed probabilistic network construction[D].Doctoral dissortation. Medical information sciences,Stanford University,Stanford ,CA, 1991
  • 7[7]Suzuki J.Learning Bayesian belief networks based on the MDL principle :An efficient algorithm using the branch and bound technique[C].Proceedings of the intermational conference on machine leaming,Bari ,Italy, 1996
  • 8[8]Fabio G Cozman.JavaBayes Version 0.345 Bayesian Networks In Java User Manual.http://www. es.cmu.edu/~javabayes/,2000
  • 9[9]G Cooper. Probabilistic Inference Using Belief Networks Is NP-Hard [R]. Technical Report KSL-g7-27.Stanford University,1987
  • 10[10].G Cooper. The Computational Complexity of Probabilistic Inference Using Bayesian Belief Networks[J].Artificial Intelligence, 1990; 42(2-3): 393-405

共引文献8

同被引文献16

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部