期刊文献+

对数效用函数理论下的可违约欧式期权定价 被引量:1

The Price Formulas of Default European Option Under Logarithmic Utility
下载PDF
导出
摘要 完全信息下的经济学都是假定投资者知道资产的期望均值和波动率,但是现实中资产的期望均值我们往往并不知道,投资者只能根据历史数据去估计,即信息不完全.因此,投资者拥有的信息和个人偏好会影响资产的定价.本文在代理人经济模型上根据第一福利定理得到了代理人之间有不同信仰和对数效用函数情况下各自的均衡消费,进而根据资产定价一般原理给出资产的均衡价格和贴现因子,得到了资产的均衡价格不受投资者信仰的影响和贴现因子为相同信仰下的加权平均的结论,最后根据期权定价理论结合信用风险强度模型给出了公司存在违约情况下,标的资产为公司股票的可违约欧式期权的定价公式. The economics under complete information always assumed that investors knew the assets;expected return and volatility,but in real world it is unknown to us and can but be estimated by historic data,i, e. incomplete information. So the information and personal taste Which investors owned affect the assets' price. On the base of the agent economic model and according to the first wel- fare theory this paper gained each equilibrium consumption , on the conditions of heterogeneous beliefs between of agents and logarithmic utility. Furthermore, according to the asset pricing theory this paper educed the assetst equilibrium price and discount factor. obtained such conclusions that the assets' equilibrium price is unaffected by investors' beliefs and the discount factor is equal to the weighted averaged of the values that in corresponding economics with homogeneous beliefs. At last,this paper gave the default European option pricing formula which underlying asset is company's stock, on the base of the option pricing theory and the credit risk intensity model.
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第6期755-759,共5页 Journal of Xiamen University:Natural Science
关键词 不同信仰 对数效用函数 均衡价格 强度模型 heterogeneous beliefs logarithmic utility function equilibrium price intensity model
  • 相关文献

参考文献9

  • 1Alexandre Ziegler. Incomplete information and Heterogeneous beliefs in continuous-time finance [M]. Springer, 2002.
  • 2杨靖三,李时银.对数效用函数理论下的期权定价[C].数学及其应用.北京:原子能出版社,2005:368-373.
  • 3杨靖三,李时银.幂效用函数理论下的欧式期权定价[J].数学的实践与认识,2006,36(2):101-107. 被引量:1
  • 4Musiela M, Routkowski M. Martingale methods in financial modellings[M]. Berlin:Springer-Verlag, 1998.
  • 5John H Cochrance. Asset pricing[M]. New Jersey:Princeton University Press,2001.
  • 6Kwok Y K. Mathematical models of finance derivatives [ M]. London: Springer, 2000.
  • 7Guo C. Option pricing with Heterogeneous expectations [J]. The Financial Review, 1998,33 : 81- 92.
  • 8Nicole El Karoui, Lionel Martellini. A theoretical inspection of the market price for default risk[R]. Mathernatiquees Appliquees France, University of Southern California American, 2002.
  • 9宋丽平,李时银.违约风险定价模型的推广与应用[J].厦门大学学报(自然科学版),2005,44(5):616-620. 被引量:7

二级参考文献11

  • 1Kay Giesecke. Credit Risk Modeling and Valuation:an Introduetion,Working Paper[R]. Zu Berlin: Humboldt University, 2002-08-19.
  • 2Jarrow Robert A, Stuart M Turbull. Pricing derivatives on financial securities subject to credit risk[J]. Journal of Finance, 1995,50 : 53-- 86.
  • 3Jarrow Robert A,Laodo D Turbull. A characterization of complete security markets on a brownian filtration in[J].Mathematical Finance, 1997,1 : 31-43.
  • 4Nicole El Karoui,Lionel Martellini. A Theoretical Inspection of the Market Price for Default Risk Mathematiquees Appliquees France[R]. California American: University of Southern, 2002-08-16.
  • 5Ioannis Karatzas,Shreve E Shreve. Brownian Motion and Stochastic Calculus[M]. Second Edition. New York Berlin Heidelberg: Springer-Verlag, 1991.
  • 6Manuel Ammann. Credit Risk Valuation-Methods, Models, and Applications[M]. Second Edition. New York:Springer,2001. 121 -- 125.
  • 7Alexandre Ziegler.Incomplete Information and Heterogenerous Beliefs in Continuous-time Finanee[M].Springer,2002.
  • 8Musiela M,Rutkowski M.Martingale Methods in Financial Modellings[J].Springer-Verlag,1998.
  • 9John H Cochrane.Asset Pricing[M].Princeton University Press,New Jersey,2001.
  • 10Damiano Brigo Fabio Mercurio.Interest Rate Models Theory and Practice[M].Springer,2001.

共引文献6

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部