期刊文献+

盐胁迫对番茄幼苗热值、能量积累及分配的影响 被引量:3

Effect of Salinity on Caloric Value,Energy Accumulation and Partitioning in Lycopersicon esculentum var.cerasiforme Alef.Seedlings
下载PDF
导出
摘要 研究了基质盐度(0、80、160、240 mmol/L NaCl)对番茄(Lycopersicon esculentumMill.)幼苗热值和能量积累的影响.结果表明:番茄幼苗干物质和能量积累存在低盐促进和高盐抑制的现象,最大值出现在80 mmol/L NaCl处,干物质为6.39 g,能量积累达92.20 kJ.随基质盐度升高,干物质和能量积累倾向于叶片中.番茄幼苗干质量热值和去灰分热值存在不同的变化规律.随盐度升高,根干质量热值和去灰分热值显著增加,而在茎叶和整个植株中,干质量热值逐渐下降,去灰分热值最大值则出现在80 mmol/L NaCl处. To study the effect of salinity on calorie value and energy accumulation in crop plant,tomato (Lycopersicon esculentum var. cerasiforrne Alef. ) seedlings were cultivated in sand medium with half strength Hoagland's solution containing 0,80,160,240 mmol/L NaCl respectively. After fifty days,dry matter and energy accumulation exhibited significant increase in response to low NaCl concentration (80 mmol/L), but decreased under high salinity level (160,240 mmol/L), with maximum dry matter 6.39 g, energy 92.20 kJ per seedling. As salt concentration increased,dry matter and energy, the percentages to total seedlings decreased in roots and stems,while increased in leaves,suggesting that dry matter and energy tended to be re-allocated to leaves. The changes of gross caloric value (GCV) and that of ash-free caloric value (AFCV) were not coincident in L. esculentum var. cerasiforme Alef. seedlings, In roots,GCV and AFCV increased markedly. But in leaves,stems and total seedling,GCV declined progressively and AFCV maximized at 80 mmol/L NaCl.
作者 云叶 杨盛昌
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第6期852-856,共5页 Journal of Xiamen University:Natural Science
基金 福建省自然科学基金(B0510003)资助
关键词 热值 能量积累 番茄 盐胁迫 calorie value energy accumulation Lycopersicon esculentum var. cerasiforme Alef. salt stress
  • 相关文献

参考文献21

  • 1Mulholland B J, Taylor I B,Jackson A C, et al. Can ABA mediate responses of salinity stressed tomato[J]. Environ Exp Bot,2003,50(1) : 17-28.
  • 2Rosello S, Diez M J, Nuez F. Viral diseases causing the greatest economic losses to the tomato crop. I. The tomato spotted wilt virus[J]. Sci Hort, 1996,67 (3) : 117-150.
  • 3Seliga J P, Shattuck V I. Crop rotation affects the yield and nitrogen fertilization response in processing tomatoes [J]. Sci Hort, 1995,64 (3) : 159-166.
  • 4Agong S G,Sehittenhelm S, Friedt W. Assessment of tolerance to salt stress in Kenyan tomato germplasm[J]. Euphytica, 1997,95 (1) : 57 - 66.
  • 5Caines A M, Shennan C. Interactive effects of Ca^2+ and NaC1 salinity on the growth of two tomato genotypes differing in Ca^2+ use efficiency[J]. Plant Physiol Biochem, 1999,37 ( 17 ) : 569-576.
  • 6Cuartero J,Fernandez-Munoz R. Tomato and salinity[J]. Sci Hort, 1999,78:83-125.
  • 7Katerji N, Van-Hoorn J W, Hamdy A, et al. Response of tomatoes, a crop of indeterminate growth, to soil salinity [J]. Agric Water Manage, 1998,38(1):59-68.
  • 8Alian A,Altman A, Heuer B. Genotypic differences in salinity and water stress tolerance of fresh market tomato cultivars[J]. Plant Sci, 2000,152 (1) : 59-65.
  • 9Ben-Gal A, Shani U. Yield, transpiration and growth of tomatoes under combined excess boron and salinity stress [J]. Plant Soil,2002,247(2) :211-221.
  • 10Racagni G, Pedranzani H, Alemano S, et al. Effect of short-term salinity on lipid metabolism and ion accumu- lation in tomato roots [J]. Biologia Plantarum, 2003, 47 (3):373-377.

二级参考文献7

共引文献95

同被引文献51

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部