期刊文献+

面向多处理器SoC设计的低功耗软硬件划分 被引量:2

Low power hardware/software partitioning for multiprocessor SoC design
下载PDF
导出
摘要 提出了解决多处理器SoC的低功耗软硬件划分问题的方法——基于神经网络的禁忌搜索算法。其基本思想是:真实的生物神经元具有抑制重复激活的阻尼特性,这与禁忌搜索对重复搜索加以限制相类似,因此设计具有阻尼特性的神经网络实现禁忌搜索算法,受阻尼特性抑制的神经元对应禁忌活动。由于神经网络复杂的动态特性和禁忌搜索优秀的全局搜索能力,该算法能够有效地跳出局部最优解。对真实任务图的实验表明,与遗传算法相比,该算法不但具有搜索速度上的优势,而且所得到的绝大部分软硬件划分方案有更低的系统功耗。 An algorithm based on tabu search on a neural network was put forward to solve the low power hardware/software partitioning problem in design of system on chip (SoC) architectures consisting of several types of processors. The basic idea of it is: the refractory effect of inhibiting the repetitive firings is one of the characteristics of real biological neurons, which is similar to the tabu effect of tabu search, so tabu search can be realized by a neural network in which neurons inhibited by the refractory effect correspond to the tabu moves. With the complex dynamics of neural networks and excellent global search capacity of tabu search, the algorithm can effectively avoid trapping in undesirable local minima. The experiments for real task graphs show that the algorithm has better time performance than the genetic algorithm, and most of hardware/software partitioning solutions gotten from the algorithm possess the lower power consumption.
出处 《高技术通讯》 CAS CSCD 北大核心 2007年第10期991-996,共6页 Chinese High Technology Letters
基金 国家自然科学基金(60503015)和863计划(2006AA01A103)资助项目.
关键词 多处理器SoC 系统级设计 软硬件划分 神经网络 禁忌搜索 低功耗 multiprocessor system-on-chip, system level design, hardware/software partitioning, neural network, tabu search, low power
  • 相关文献

参考文献14

  • 1Keutzer K, Malik S, Newton R, et al. System level design: Orthogonalization of concerns and plafform-based design. IEEE Trans Computer-Aided Design, 2000, 19(12) :1523-1543
  • 2Arato P, Mann Z a, Orban A. Algorithmic aspects of hardware/software partitioning. ACM Trans Design Automation of Electronic Systems, 2005, 10(1) :136-156
  • 3Kalavade A. System-level codesign of mixed hardware-software systems: [PhD dissertation]. CA: University of California, Berkeley, 1995
  • 4Ernst R, Henkel J, Brenner T. Hardware-software co-synthesis for mirco-controllers. IEEE Design & Test of Computers, 1993, 10(4) :64-75
  • 5Arato P, Juh' asz S, Mann Z a, et al.Hardware/software partitioning in embedded system design. In: Proceedings of the IEEE International Symposium on Intelligent Signal Processing, 2003. 197-202
  • 6Kalavade A, Lee E A. The extended partitioning problem: hardware/software mapping, scheduling, and implementation-bin selection. Design Automation for Embedded Systems, 1997, 2(1): 125-63
  • 7D'Ambrosio J, Hu X. Configuration-level hardware/software partitioning for resl-time embedded systems. In: Proceedings of International Workshop Hardware/Software Co-Design, 1994. 34-41
  • 8熊志辉,李思昆,陈吉华.遗传算法与蚂蚁算法动态融合的软硬件划分[J].软件学报,2005,16(4):503-512. 被引量:87
  • 9Dave B P, Lakshminarayana G, Jha N K. COSYN: Hardware-software co-synthesis of heterogeneous distributed embedded systems. IEEE Trans VLSI Systems, 1999, 7(1): 92-104
  • 10Dick R P, Jha N K. MOGAC: A multiobjective genetic algorithm for the hardware-software co-synthesis of distributed embedded systems. IEEE Trans Computer-Aided Design, 1998, 17(10) : 920-935

二级参考文献15

  • 1Gupta RK, Micheli GD. System-Level synthesis using re-programmable components. In: Hugo DM, Herman B, eds. Proc. of the European Conf. on Design Automation (EDAC). Brussels: IEEE Computer Society Press, 1992.2-7.
  • 2Garey MR, Johnson DS. Computers and Intractability: A Guide to the Theory ofNP-Completeness. W.H.Freeman Company, 1979.
  • 3Kastner R. Synthesis techniques and optimizations for reconfigurable systems [Ph.D. Thesis]. Los Angeles: University of California, 2002.
  • 4Ernst R, Henkel J, Benner T. Hardware-Software cosynthesis for microcontrollers. IEEE Design & Test of Computers, 1993,10(4):64-75.
  • 5Saha D, Mitra RS, Basu A. Hardware software partitioning using genetic algorithm. In: Agrawal V, Mahabala HN, eds. Proc. of the 10th Int'l Conf. on VLSI Design. Hyderabad: IEEE Computer Society Press, 1997. 155-160.
  • 6Peng Z, Kuchcinski K. An algorithm for partitioning of application specific systems. In: Courtois B, eds. Proc. of the European Conf. on Design Automation (EDAC). Paris: IEEE Computer Society Press, 1993.316-321.
  • 7Else P, Peng Z, Kuchcinski K, Doboli A. System level hardware/software partitioning based on simulated annealing and tabu search.Design Automation of Embedded Systems, 1997,2(1):5-32.
  • 8Kalavade A, Lee EA. The extended partitioning problem: hardware/software mapping, scheduling, and implementation-bin selection. Design Automation of Embedded Systems, 1997,2( 1 ): 125-163.
  • 9Wang G, Gong WR, Kastner R. A new approach for task level computational resource bi-partitioning. In: Gonzalez TF eds. Proc. of the IASTED Int'l Conf. on Parallel and Distributed Computing and Systems (PDCS). ACTA Press, 2003.434-444.
  • 10Dorigo M, Maniezzo V, Colorni A. The ant system: Optimization by a colony of cooperating agents. IEEE Trans. on Systems, Man and Cybernetics, Part-B, 1996,26(1):29-41.

共引文献86

同被引文献14

  • 1熊志辉,李思昆,陈吉华.遗传算法与蚂蚁算法动态融合的软硬件划分[J].软件学报,2005,16(4):503-512. 被引量:87
  • 2高健,李涛.三种软硬件划分算法的比较分析[J].计算机工程与设计,2007,28(14):3426-3428. 被引量:13
  • 3MICHAEL R G, DAVID S J. Computers and intractability: A guide to the theory of NP-completeness [ M]. San Francisco: W H Free- man & Co Ltd, 1979: 145.
  • 4DICK R P, JHA N K. MOGAC: A muhiobjective genetic algorithm for the co-synthesis of hardware-software embedded systems [ C]// IEEE/ACM International Conference on Computer-Aided Design. San Jose: IEEE Computer Society, 1997:522 -529.
  • 5JORG H. A low-power hardware/software partitioning approach for core-based embedded systems [ C]//Proceedings of the 36th ACM/ IEEE Conference on Design Automation. New Orleans, LA: IEEE, 1999:122 - 127.
  • 6GUO BING, WANG DIANHUI, SHEN YAN, et al. Hardware-software partitioning of real-time operating systems using Hopfield neural net- works [J]. Neurocomputing, 2006, 69(16/17/18): 2379-2384.
  • 7PEREIRA C, RAGHUNATHAN V, GUPTA S. A software architec- ture power aware real time operating systems, CECS Technical Re- port 02-02 [ R]. Irvine: University of California, 2002.
  • 8HOPFIELD J J, TANK D W. Neural computation of decisions in op- timization problems [ J]. Biological Cybernetics, 1985, 52(3) : 141 - 152.
  • 9李涛,杨愚鲁,马平,柴欣.基于遗传算法的可重构系统软硬件划分[J].计算机工程与应用,2007,43(26):56-58. 被引量:9
  • 10范乐君,李斌,庄镇泉,傅忠谦.一种基于DQCGA算法的软硬件动态划分方法[J].计算机科学,2008,35(5):201-204. 被引量:1

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部