期刊文献+

镁剂对大鼠蛛网膜下腔出血后血管内皮生长因子表达的影响 被引量:1

The effect of MgSO_4 on expression of VEGF after subarachnoid hemorrhage of SD rats
下载PDF
导出
摘要 目的观察硫酸镁对大鼠蛛网膜下腔出血(SAH)模型脑内内皮细胞生长因子(VEGF)的影响。方法将96只SD大鼠随机分为SAH组、假手术组、SAH加镁组、假手术加镁组建立实验动物模型。分别于相应时间点采用免疫组化技术分析大鼠脑内VEGF分布情况。结果假手术组和假手术加M镁组均可见到少量VEGF的表达,两者差异无显著性。在蛛网膜下腔出血组24h明显表达,3d表达强度进一步增高,7d达高峰,14d下降至正常。其阳性细胞主要分布在大脑皮层,基底节区、海马等部位也有较多。其细胞类型主要为神经细胞、胶质细胞、血管内皮细胞等。在SAH后的不同时间点免疫组织化学结果为:SAH加镁组大鼠VEGF的表达明显高于SAH组。结论硫酸镁促进了VEGF的表达,其通过促进VEGF的表达参与了继发性脑损伤的保护机制。 Objective To explore effect of MgSO4 on expression of vascular endothelial growth factor (VEGF) after subaraehnoid hemorrhage (SAH) of SD rats. Methods Ninety - six SD rats were divided randomly into four groups including: pseudo - operated group; SAH model group; pseudo - operated groups dealed with MgS04, SAH model group dealed with MgSO4. VEGF was measured by radio immunoassay respectively at different time, Results Compared with those in SAH model group, the level of expression of VEGF was increased in SAH model group dealed with MgSO4. Conclusion Magnesium can increase the level of VEGF expression.
出处 《临床和实验医学杂志》 2007年第11期3-4,共2页 Journal of Clinical and Experimental Medicine
关键词 蛛网膜下腔出血 硫酸镁 血管内皮细胞生长因子 Subarachnoid hemorrhage Magnesium VEGF
  • 相关文献

参考文献1

  • 1W. M. van den Bergh,K. W. Albrecht,J. W. Berkelbach van der Sprenkel,G. J. E. Rinkel. Magnesium therapy after aneurysmal subarachnoid haemorrhage a dose-finding study for long term treatment[J] 2003,Acta Neurochirurgica(3):195~199

同被引文献27

  • 1吴茂江.镁与人体健康[J].微量元素与健康研究,2006,23(2):65-66. 被引量:20
  • 2洪炳哲,朴海南,李胜范,朴华,金龙,曹平安.血管内皮生成因子_(165)诱导血管形成中镁离子作用的研究[J].中华心血管病杂志,2007,35(3):260-264. 被引量:5
  • 3Qiu x, Wan P, Tan L, et al. Preliminary research on a novel bioactive silicon doped calcium phosphate coating on AZ31 magnesium alloy via electrodeposition[J] . Mater Sci Eng C Mater Biol Appl, 2014, 36: 65-76.
  • 4Tan L, Wang Q, Lin X, et al. Loss of mechanical properties in vivo and bone-implant interface strength of AZ31 B magnesium alloy screws withSi-containingcoating[J]. ActaBiomater, 2014, 10(5): 2333-2340.
  • 5Li J. Behaviour of titanium and titania-based ceramics in vivo and in vivo[J]. Biomaterials, 1993, 14(3): 229-232.
  • 6Abdel-Hady Gepreel M, Niinomi M. Biocompatibility of Ti-alloys for long-term implantation[J]. J Mech Behav Biomed Mater, 2013, 20: 407 -415.
  • 7Kim DG, Huja SS, Tee BC, et rd. Bone ingrowth and initial stabihty of titanium and porous tantalum dental implants: a pilot canine study [J]. Implant Dent, 2013, 22(4): 399-405.
  • 8Ryan G, Pandit A, Apatsidis DP. Fabrication methods of porous metals for use in orthopaedic applications[J] . Biomaterials, 2006, 27(13): 2651-2670.
  • 9Holy CE, Fialkov JA, Davies JE, et al. Use of a biomimetic strategy to engineer hone[J] . J Biomed Mater Res A, 2003, 65(4): 447-453.
  • 10Krishna BV, Bose S, Bandyopadhyay A. Low stiffness porous Ti structures for load-bearing implants[J]. Aeta Biomater, 2007, 3(6): 997-1006.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部