期刊文献+

基于形态学的二分法边缘提取算法 被引量:3

A bisectional edge extraction algorithm based on mathematical morphology
下载PDF
导出
摘要 对于光照不均匀的图像,形态学边缘提取算法的分辨率远远逊色于人眼的分辨率.产生这种差异的原因是形态学算法仅仅是从几何学的角度出发来检测边缘,并没有模拟出人眼的生物特性.为了提高形态学算法的分辨率,通过研究人眼对光强的特性响应曲线,注意到了人眼对于光线具有亮度适应特性.把亮度适应特性加入形态学边缘提取算法,得到了高分辨率的二分法边缘提取算法.二分法边缘检测算法以强弱光亮度的中心点亮度为分界点,高于分界点的像素亮度被削弱,低于分界点的像素亮度被提高.如此在压制强光的同时增强弱光来模拟出人眼的亮度适应特性.实验证明二分法是一个具有高实时性、低噪声、高分辨率边缘提取算法. The resolution of a morphological edge extraction algorithm is lower than that of the human eye for pictures with uneven illumination because the former only detects edges based on their angle of geometry rather than simulating the biological characteristics of the human eye. To improve the resolution of a morphological algorithm, the adaptability of the human eye to light luminance must be considered. Combining light luminance adaptability with a morphological edge extraction algorithm results in a new algorithm with high resolution. We have called it a bisectional edge extraction algorithm. It takes the luminance of a central point between a point with strong luminance and a point with weak luminance as a dividing point. Then pixels with luminance lower than that of the dividing point are suppressed, otherwise they are enhanced. In this way, the light adaptability of the human eye is simulated. Experiments show that this new algorithm is a good edge extraction algorithm with high resolution, real - time results and low noise.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2007年第10期1116-1121,共6页 Journal of Harbin Engineering University
关键词 数学形态学 二分法 边缘提取 亮度适应 mathematical morphology bisectional edge extraction edge extraction light luminance adaptation
  • 相关文献

参考文献11

二级参考文献33

  • 1林椹尠,宋国乡,薛文.图像的几种小波去噪方法的比较与改进[J].西安电子科技大学学报,2004,31(4):626-629. 被引量:22
  • 2刘志,杨杰,彭宁嵩.基于假设检验和区域合并的视频对象分割[J].数据采集与处理,2004,19(2):124-129. 被引量:7
  • 3Yun Dong, Park S H, Lee S U. Color Image Segmentation Based on 3D Clustering: Morphological Approach[J]. Pattern Recognition, 1998,31 (8): 1061-1076.
  • 4Gu Chuang, Lee M C. Semantic Video Object Segmentation and Tracking Using Mathematical Morphology and Perspective Motion Model[J]. IEEE Trans on Image Proceeding, 1997,8(5):514-517.
  • 5Lee S H,Shapiro L G. Morphologic Edge Detection[J]. IEEE J Robot Automat, 1987,3(2): 142-155.
  • 6Canny J.A Computational Approach to Edge Detection[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,1986,8 (6):679-698.
  • 7Zhong D,Chang S F.Structure Parsing and Event Detection for Sports Video[R].Columbia University ADVENT Technical Report #091,2000.
  • 8Xie Lexing,Xu Peng,Chang Shihfu,et al.Structure Analysis of Soccer Video with Domain Knowledge and Hidden Markov Models[J].Pattern Recognition Letters,2004,25 (7):767-775.
  • 9Ekin A,Tekalp A M.Automatic Soccer Video Analysis and Summarization[J].IEEE Transaction on Image Processing,2003,12 (7):796-807.
  • 10Ekin A,Tekalp A M.Shot Type Classification by Dominant Color for Sports Video Segmentation and Summarization[C].International Conference on Acoustics,Speech,and Signal Processing.2003,3:173-178.

共引文献38

同被引文献15

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部