期刊文献+

域上保持对称矩阵群逆的线性算子 被引量:3

Linear maps preserving group inverse of symmetric matrices over field
下载PDF
导出
摘要 设F是一个特征为2的域,|F|>4,令Mn(F),Sn(F),分别为全矩阵空间和对称矩阵空间.讨论了在特征为2的情况下从Sn(F)到Mn(F)上保持对称矩阵群逆的线性算子的表示形式问题.给出了在特征为2的情况下从Sn(F)到Sn(F)保持对称矩阵群逆的线性算子的表示形式.研究的保持问题不仅在数学理论上有着广泛研究,而且在系统控制、量子力学、微分几何、数理统计等领域有着广泛的实际应用背景. Let F be a field of chF = 2, │F│〉 4, and Mn ( F), Sn (F) be the spaces of all matrices and symmetric matrices respectively over F. In this paper we determine the forms of linear maps from S. (F) to M. (F) preserving group inverse of symmetric matrices under chF = 2 and also determine the forms of linear maps from S.(F) to itself preserving group inverses of symmetric matrices under chF = 2. The problem we are study not only be developed deeply in mathematic theory, but also be applied extensively on practice such as system control, quantum mechanics, differential geometry and mathematical statistics ,etc.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2007年第10期1188-1190,共3页 Journal of Harbin Engineering University
基金 哈尔滨工程大学基础研究基金资助项目(HEUF04019)
关键词 矩阵的群逆 线性算子 对称矩阵 field group inverse linear operator symmetric matrices
  • 相关文献

参考文献4

二级参考文献15

  • 1卜长江,曹重光.域上矩阵群逆的加法保持映射[J].Journal of Mathematical Research and Exposition,2004,24(3):503-507. 被引量:6
  • 2张显 曹重光.保不变量的矩阵加群同态[M].哈尔滨:哈尔滨出版社,2001..
  • 3冯克勤.交换代数基础[M].北京:高等教育出版社,1985..
  • 4LI C K, TSING N K. Linear preserver problems: a brief introduction and Some special techniques [J].Linear Algebra Appl. , 1992, 162-164: 217-235.
  • 5OMLADIC M, SEMRL P. Spectrum-preserving additive maps [J]. Linear Algebra Appl., 1991, 153:67-72.
  • 6OLADIC M, SEMRL P. Additive mappings preserving operators of rank one [J]. Linear Algebra Appl., 1993, 182: 239-256.
  • 7CAO Chong-guang, ZHANG Xian. Additive operators preserving idempotente matrices over fields and applications [J]. Linear Algebra Appl. , 1996, 248: 327-338.
  • 8ZHANG Xian, CAO Chong-guang, BU Chang-jiang. Additive maps preserving M-P inverses of matrics over fields [J]. Linear. Multilinear Algebra, 1999, 46: 199-211.
  • 9BELL J, SOUROUR A R. Additive rank-one mapping on triangular matrix algebras [J]. Linear Algebra Appl. , 2000, 312: 13-33.
  • 10Cao Chong-guang,Zhang Xian.Additive operators preserving idempotent matrices over fields and applications[J].Linear Algebra Appl.,1996,248:327-338.

共引文献9

同被引文献19

  • 1张显,曹重光.关于域上矩阵广义逆的加法映射[J].数学学报(中文版),2004,47(5):1013-1018. 被引量:7
  • 2卜长江.关于体上分块矩阵的群逆[J].数学杂志,2006,26(1):49-52. 被引量:4
  • 3LI C K, TSING N K. Linear preserver problems: a brief introduction and some special techniques[ J]. Linear Algebra Appl, 1992, 162 - 164: 217 - 235.
  • 4LIU Shao-wu, ZHAO Dong-bin. Introduction to linear preserver problems[ M]. Harbin: Harbin press, 1997.
  • 5WANG Mei-li, FANG Li, JI Guo-xing. Linear maps preserving idempotency of products or triple Jordan products of operators[ J ]. Linear Algebra Appl, 2008, 429 ( 1 ) : 181 - 189.
  • 6卜长江,王贵艳,井世丽.主理想整环上保对称矩阵群逆的线性算子[J].哈尔滨工程大学学报,2007,28(8):942-946. 被引量:1
  • 7张显 曹重光.保不变量的矩阵加群同态[M].哈尔滨:哈尔滨出版社,2001..
  • 8庄瓦金.任意体上矩阵对合函数与广义逆.东北数学,1987,1:57-65.
  • 9GOLUB G H, GREIF C. On solving block-structured indefinite linear systems [ J]. SIAM J Sci Comput, 2003, 24: 2076 -2092.
  • 10IPSEN I C F. A note on preconditioning nonsymmetric matrice [J]. SIAM J Sci Comput, 2001,23: 1050-1051.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部