摘要
设F是一个特征为2的域,|F|>4,令Mn(F),Sn(F),分别为全矩阵空间和对称矩阵空间.讨论了在特征为2的情况下从Sn(F)到Mn(F)上保持对称矩阵群逆的线性算子的表示形式问题.给出了在特征为2的情况下从Sn(F)到Sn(F)保持对称矩阵群逆的线性算子的表示形式.研究的保持问题不仅在数学理论上有着广泛研究,而且在系统控制、量子力学、微分几何、数理统计等领域有着广泛的实际应用背景.
Let F be a field of chF = 2, │F│〉 4, and Mn ( F), Sn (F) be the spaces of all matrices and symmetric matrices respectively over F. In this paper we determine the forms of linear maps from S. (F) to M. (F) preserving group inverse of symmetric matrices under chF = 2 and also determine the forms of linear maps from S.(F) to itself preserving group inverses of symmetric matrices under chF = 2. The problem we are study not only be developed deeply in mathematic theory, but also be applied extensively on practice such as system control, quantum mechanics, differential geometry and mathematical statistics ,etc.
出处
《哈尔滨工程大学学报》
EI
CAS
CSCD
北大核心
2007年第10期1188-1190,共3页
Journal of Harbin Engineering University
基金
哈尔滨工程大学基础研究基金资助项目(HEUF04019)
关键词
域
矩阵的群逆
线性算子
对称矩阵
field
group inverse
linear operator
symmetric matrices