期刊文献+

材料设计中的结构层次理论及跨尺度关联问题 被引量:4

Structural levels theory and trans-scale correlation problem of materials design
下载PDF
导出
摘要 结合图、表和公式综述了材料设计从宏观到微观的不同层次理论的研究现状,包括连续介质力学、结构动力学、缺陷动力学、分子动力学和量子力学等,其中,量子力学属于微观层次,分子动力学主要属于介观层次,其余属于宏观层次;进而讨论了材料设计领域的构建材料结构与性质关系、以及沟通与整合各层次理论的跨尺度关联问题。最后,介绍了现阶段材料设计的知识库和数据库技术、专家系统技术、计算机模拟技术和纯理论计算方法等4种途径。 The status quo of theoretical researches at different structure levels of materials design from macro to micro scale was reviewed. With figures, tables and formulas, concerning continuum mechanics, structure dynamics, defect dynamics, molecule dynamics and quantum mechanics etc. And the quantum mechanics belongs to microscopic scale molecule dynamics belongs to mesoscopic scale, others belong to macro-scopic scale. The problem of trans-scale correlation in materials design to construct the relationship between slructures and properties and integrate theories at each scale of materials was discussed. And the four realization approaches in materials design were introduced including knowledge database, expert system, computer modeling and pure theoretical computations.
作者 陶辉锦 尹健
出处 《粉末冶金材料科学与工程》 EI 2007年第5期264-271,共8页 Materials Science and Engineering of Powder Metallurgy
关键词 材料设计 跨尺度关联 数据库技术 计算机模拟 理论计算 materials design multi-scale correlation database technology computer modeling theoretical calculation
  • 相关文献

参考文献68

  • 1[3]Panel on Computational and Theoretical Techniques for Materials Science.Computational and theoretical techniques for materials Science[EB].[1995-12-12].http://www2.nas.edu/nsb/20fa.html.
  • 2[4]中国科学院纳米科技网.纳米技术与我们的机会[EB].[2004-12-20].http://www.casnano.ac.cn/gb/kepu/cailiao/c1024.html.Nano science and technology network of CAS.Nano technology and our chance[EB].[2004-12-20].http://www.casnano.ac.cn/gb/kepu/cailiao/c1024.html.
  • 3[5]北京大学力学与工程科学系.弹性力学的理论基础[EB].[2004-11-20].http://www.mech.pku.edu.cn/elasweb/couse/cha0-2.htm.Department of mechanics science and engineering.Theoretical basis for elastic mechanics[EB].[2004-11-20].http://www.mech.pku.edu.cn/elasweb/course/cha0-2.htm.
  • 4[9]CHUNG D L,CAO J Y.Defect dynamics of cement mortar under repeated loading,studied by electrical resistivity measurement[J].Cement and Concrete Research,2002,32(2):379-385.
  • 5[10]ROTTLER J,SROLOVITZ D J,CAR R.Point defect dynamics in bcc metals[J].Physical Review B,2005,71(6):4109-4120.
  • 6[11]MCCARTY K F,NOBEL J A,BARTELT N C.Surface dynamics dominated by bulk thermal defects:the case of NiAl(110)[J].Physical Review B,2005,71(8):5421-5432.
  • 7[13]OLSON G B.Beyond discovery:design for a new material world[J].CALPHAD,2001,25(2):175-190.
  • 8[14]POSSELT M,GAO F,ZWICKER D.Migration of di-and tri-interstitials in silicon[J].Nuclear Instruments and Methods in Physics Research,Section B:Beam Interactions with Materials and Atoms,2005,228(3):212-217.
  • 9[15]DEVANATHAN R,CORRALES L R,WEBER W J,et al.Molecular dynamics simulation of defect production in collision cascades in zircon[J].Nuclear Instruments and Methods in Physics Research,Section B:Beam Interactions with Materials and Atoms,2005,228(3):299-303.
  • 10[16]DAVID R.Atomic-scale modeling of clear band formation in FCC metals[J].Nuclear Instruments and Methods in Physics Research,Section B:Beam Interactions with Materials and Atoms,2005,228(3):100-110.

同被引文献48

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部