期刊文献+

基于最小二乘SVM的混沌跳频通信码预测方法 被引量:5

Chaotic-FH Code Prediction Method Based on LS-SVM
下载PDF
导出
摘要 作为一种用于解决诸如非线性分类,函数估计,密度估计一类问题有力的解决方法,支持向量机近来在其他许多基于核函数学习领域得到发展。基于混沌跳频码的动力系统特性,本文构建了一种支持向量机的预测模型,并采用最小二乘法对模型进行训练,最后通过L-K映射生成的跳频码序列对模型进行了验证,仿真结果表明这种高精度的支持向量机用于针对基于混沌映射的跳频码的预测,具有很低的均方误差和高相关系数良好性能。 Support vector machine (SVM) is a powerful method for solving problems such as nonlinear classification, function estimation and density estimation. It has also achieved great developments in many other kernelbased learning fields recently. Based on the chaotic-FH code characteristics in chaotic dynamic system, a prediction model of support vector machine in combination with Takens' delay coordinate phase reconstruction of chaotic time is established; and least square model for large-scale problems is used to train this model. Finally an FH-code series generated by Logistic-Kent mapping is applied to test the model. Simulation results show that this high-accuracy and fault-tolerant SVM model has an excellent performance with very low mean square error and high correlation coefficient in chaotic-FH code prediction.
作者 王燚 郭伟
出处 《电子测量与仪器学报》 CSCD 2007年第5期64-68,共5页 Journal of Electronic Measurement and Instrumentation
基金 战术通信抗干扰技术国防科技重点实验室基金(编号:51434020105ZS04)资助
关键词 跳频码 混沌映射 支持向量机 最小二乘法 FH code, chaotic mapping, support vector machine (SVM), least square method.
  • 相关文献

参考文献7

  • 1李文化,王智顺,何振亚.用于跳频多址通信的混沌跳频码[J].通信学报,1996,17(6):17-21. 被引量:45
  • 2Andreas Abel, Wolfgang Schwarz, Chaos Communications - Principles, Schemes, and System Analysis [ C ]. Proceedings of the IEEE, 2002, 90(55) :691 -790.
  • 3P. Grassberger and I. Proeaccia, Measuring the strangeness of strange attractors [ J ]. Physica D, 1983,9 : 189 - 208.
  • 4V. N. Vapnik. The Nature of Statistical Learning theory [M]. Springer-Vedag, New York, 2nd edition, 2000.
  • 5J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, J. Vandewalle, Least Squares Support Vector Machines [ M ]. World Scientific Pub. Co. , Singapore, 2002.
  • 6Bas J. de Kruif and Theo J. A. de Vries, Support-Vectorbased Least Squares for learning nonlinear dynamics[ C ]. Proceedings of the 41st IEEE Conference on Decision and Control Las Vegas, Nevada USA, Dec, 2002, 2 : 1343 - 1348.
  • 7V. Cherkassky and Y. Ma, Practical selection of SVM parameters and noise estimation for SVM regression[ C ]. Neural Networks, Jan. 2004, 17(1) : 113 - 126.

二级参考文献6

共引文献44

同被引文献52

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部