期刊文献+

广义Fibonacci立方体的网络容错性质分析 被引量:2

Fault-tolerant analysis of extended Fibonacci cube
下载PDF
导出
摘要 主要研究广义Fibonacci立方体的容错直径和宽直径,证明了n维Fibonacci立方体网络的k-1容错直径和k宽直径都是n-1,其中k=[n/3]. In this paper, that k - 1 Fault-tolerant diameter and k width diameter of extended Fibonacci cubes are both n - 1 for k = [n/3] is proved.
作者 蒋勉 李乔良
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2007年第4期491-497,共7页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 国家自然科学基金(10571052) 湖南省教育厅优秀青年基金(04B047)
关键词 广义 Fibonacci立方体 容错直径 宽直径 extended Fibonacci cube fault-tolerant diameter width diameter
  • 相关文献

参考文献15

  • 1Xu J M. Toplogical Structure and Analysis of Interconnection Networks[M]. Dordr-drecht/Boston/London: Kluwer Academic Publishers, 2001.
  • 2Hsu W J. Fibonacci cubes-a new interconnection topology[J]. IEEE Trans on Parallel and Distributed Systems, 1993, 1(4): 3-12.
  • 3Bergum J,Cong B,Sharma S.Simulation of Tree Structures on Fibonacci Cubes[A]. In: Proc First Int'I Conf Computer Comm.and Networks[C].1992,279-283.
  • 4Hsu W J,Page C V, Liu J S. Computing Prefixes on a Large Family of Interconnection Topologies[A].In: Proc 1992 Int'I Conf Parallel Processing[C]. 1992,Vol.3,153-159.
  • 5Cong B, Zheng S Q, Sharma S. On Simulations of Linear Arrays, Rings, and 2-D Meshs on Fibonacci Cube Networks[A]. In: Proc Seventh Int'I Parallel Processing Symp[C].1993,748-751.
  • 6Wu J.Extended Fibonacci cubes[J]. IEEE Trans on Parallel and Distributed Systems,1997,12(8):1203-1210.
  • 7Hsu D F, Lyuu Y D.A graph-theoretical study of transmission delay and fault tolerance[J]. International Journal of Mimi-and Microcomputers,1994,16(1):35-42.
  • 8Flandrin E,Li H. Mengerian properties, Hamiltonicity, and claw-free graphs[J]. Networks,1994,24(2):177-183.
  • 9Kishnamoorthy M S, Kirshnamirthy B. Fault diameter of interconnection networks[J]. Computers and Mathematics with Application, 1987,13(5/6): 577-582.
  • 10Ali Karci. New Interconnection Networks: Fibonacci Cube and Extended Fibonacci Cubes Based Hierarchic Networks[A]. In: Proc of 15th ICOIN[C]. 2001.

同被引文献6

  • 1朱强,徐俊明.立方体和折叠立方体的限制边连通度和超边连通度(英文)[J].中国科学技术大学学报,2006,36(3):249-253. 被引量:17
  • 2Cheng S Y, Chuang J H. Varietal Hypercube-A Mew Interconnection Networks Topology for Large Scale Multicomputer[A]. Prooceedings of International Conference on Parallel and Distributed Systems[C]. 1994, 703-708.
  • 3Hsu D F, Lyuu Y D. A graph-theoretical study of transmission delay and fault tolerance[J]. International Journal of Mini and Microcomputers , 1994, 16(1): 35-42.
  • 4Flandrin E, Li H. Mengerian properties, hamiltonicity, and claw-free graphs[J]. Networks, 1994, 24(2): 177-183.
  • 5Kishnamoorthy M S, Kirshnamirthy B. Fault diameter of interconnection networks[J]. Computers and Mathematics with Application, 1987, 13(5/6): 577-582.
  • 6Xu Junming. Toplogical Structure and Analysis of Interconnection Networks[M]. Dordrdrecht/Boston/London: Kluwer Aademic Publishers, 2001.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部