期刊文献+

基于框架理论的非正交小波降噪方法研究 被引量:1

Studying of Non-orthogonal Wavelet Denoising Method Based on the Frame Theory
下载PDF
导出
摘要 将正交小波降噪的阈值处理方法引入到非正交小波降噪过程中,提出了Hilbert空间中基于框架的非正交小波阈值降噪方法。该方法由于对尺度和时间的冗余抽样,所以能将信号尺度特征和锐变位置更精确定位,成为信号降噪处理的一个有效途径。 Using the threshold processing method of orthogonal wavelet in non-orthogonal wavelet denoising process, we proposed the non-orthogonal wavelet thresholding denoising algorithm based on frame theory in Hilbert spaces, and because the redundancy sample of the scale and time, we believe the algorithm can get a more accurate localization to the signal's scale characterization and the position of acute change, and it will be an effect way of one signal's denoising process.
作者 林刚 王宏军
出处 《微电子学与计算机》 CSCD 北大核心 2007年第11期92-94,共3页 Microelectronics & Computer
关键词 框架理论 非正交小波 降噪 frame theory non-orthogonal wavelet denoising
  • 相关文献

参考文献5

  • 1Daubechies I.The wavelet transform,time-frequency localization and signal analysis[J].IEEE Trans.Information Theory,1990,36(5):961-1005
  • 2Krim H,Tucker D,Mallat S,et al.On denoising and best signal representation[J].IEEE Transactions on Information Theory,1999,45(7):2225-2238
  • 3Donoho D L,Johnstone I M.Ideal spatial adaptation by wavelet shrinkage[J].Biometrika,1994,811(3):425-455
  • 4Donoho D L,Jphnstone I M.Adapting to unknown smoothness via wavelet shrinkage[J].J.Amer.Stat.Assoc.,1995,90(432):1200-1224
  • 5Daubechies I,Grossmann A,Meyer Y.Painless non-orthogonal expansions[J].J.Math.Phys.,1986,27(5):1271-1283

同被引文献5

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部