期刊文献+

支持向量机方法在山东山洪地质灾害预报中的应用试验 被引量:2

Application of Support Vector Machine Method to Mountain-Flood Disaster Forecast in Shandong Province
下载PDF
导出
摘要 用支持向量机(SVM)方法根据T213数值资料和济南、淄博、泰安、莱芜4站的降水实况资料对山东山洪灾害多发的鲁中山区进行了降水分类预报试验。结果表明:多项式核和径向基核函数建立的模型较好地提炼了降水信息,都具有很高的预报技巧,客观性和实用性强,有很强的推广能力;用径向基核函数建的非线性降水分类模型优于用多项式核函数建立的线性降水分类预报,特别是资料减少时,非线性降水分类预报明显优于线性降水分类预报;低层大气湿度可能对线性降水分类有重要影响;建模时用的资料数据格式与实际业务中获得的数据格式应尽量保持一致。 The precipitation classification forecast model of flooding for the mountain areas of central Shandong Province, was built based on T213 data and precipitation data from Jinan, Zibo, Taian and Laiwu by applying the Support Vector Machine (SVM) method. The results indicate that the model based on the polynomial kernel and the model based on radial basic function kernel can extract well precipitation information, and both have good forecast skill and prediction capabilities, but the later is better especially when the data is insufficient. The lower-layer moisture has a great influence on the model based on the polynomial kernel. The data used in modeling should keep as consistent as possible with the data used in operation in data format.
出处 《气象科技》 2007年第5期642-645,共4页 Meteorological Science and Technology
基金 山东省气象局重点课题"山东山洪地质灾害"资助
关键词 支持向量机 降水预报 降水分类 山洪 地质灾害 SVM, precipitation forecast, precipitation classification, mountain flood, geological disasters
  • 相关文献

参考文献3

二级参考文献16

  • 1冯汉中,陈永义.处理非线性分类和回归问题的一种新方法(Ⅱ)——支持向量机方法在天气预报中的应用[J].应用气象学报,2004,15(3):355-365. 被引量:122
  • 2黄嘉佑,谢庄.卡尔曼滤波在天气预报中的应用[J].气象,1993,19(4):3-7. 被引量:32
  • 3Vapnik V N.Statistical Learning Theory.John Wiley & Sons,Inc.,New York,1998.
  • 4Vapnik V N.The Nature of Statistical Learning Theory.Springer Verlag,New York,2000.(有中译本:张学工译.统计学习理论的本质.北京:清华大学出版社,2000.)
  • 5Cristianini N and Shawa-Taylor J.An Introduction of Support Vector Machines and Other Kernel_based Learning Methods.Cambridge University Press,2000.
  • 6Burges C J.A tutorial on support vector machines for pattern recognition.Data Mining and Knowledge Discovery,1998,2: 127~167.
  • 7Courant R and Hilbert D,Method of Mathematical Physics,Volume I.Springer Verlag,1953.
  • 8http://www.kernel-machines.org/
  • 9Scholkopf B,Burges Ch-J C and Smola A J,edited.Advances in Kernel Methods-Support Vector Learning.MIT Press,Cambridge,1999.
  • 10叶笃正,曾庆存,郭裕福.当代气候研究.北京:气象出版社,1991.164-177.

共引文献243

同被引文献28

引证文献2

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部