期刊文献+

基于独立分量分析的雷达信号分选研究 被引量:1

Research on Radar Signal Sorting Method Based on ICA
下载PDF
导出
摘要 独立分量分析(Independent Component Analysis,ICA)是近年来发展起来的一种有效的盲信源分离方法。在介绍了独立分量分析基本理论的基础上,将基于负熵最大化的FastICA算法应用于对脉冲多普勒雷达信号和连续波雷达信号进行分选,是一种新方法的尝试,并通过2种性能指标来评价分选的效果。仿真结果表明,该算法能够有效地对脉冲多普勒雷达信号和连续波雷达信号进行分选。  Independent Component Analysis(ICA) is a method for blind source separation,which has been developed in recent years.ICA basic principle is discussed in this paper.A FastICA algorithm based on Negentropy-maximization is used for sorting a pulse Doppler radar signal and a continuous-wave radar signal.This method is a new trial.There are two performance specifications to evaluate the sorting.The simulation result shows that this algorithm can efficiently sort the pulse Doppler radar signal and the continuous-wave radar signal.
出处 《无线电工程》 2007年第10期17-20,共4页 Radio Engineering
关键词 独立分量分析 负熵 FASTICA 雷达信号分选 ICA negentropy FastICA radar signal sorting
  • 相关文献

参考文献2

二级参考文献4

  • 1黄高明,杨绿溪.基于盲信号抽取的雷达信号分选技术研究[J].无线电工程,2004,34(8):30-32. 被引量:4
  • 2Yang H H, Amari S. Adaptive on-line learning algorithm for blind separation: Maximumentropy and minimum mutual information. Neural Computation, 1997;9(5) : 1457 - 1482.
  • 3Cichocki A, Karhunen J, Kasprzak W, et al. Neural Networks for blind separation with unknown number of sources. Neural-computing, 1999 ;24: 55 - 93.
  • 4Lou Shun-tian, Zhang Xian-Da. Blind Source Separation for Changing Source Number: A Neural Network Approach witha Variable Structure. ICA2001 ,December9- 12, San Diego, California, USA.

共引文献11

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部