期刊文献+

拉回图中的函子

The Functors Arising from Pullback Diagram
下载PDF
导出
摘要 设R1,R2,R′是三个环,j1:R1→R′和j2:R2→R′是环的同态,如果环R是j1,j2作为环的拉回,则称R是环R1和R2通过环R′的拉回环.首先证明拉回环R上的模范畴与以R1-模及R2-模为对象构造的一类范畴之间存在一对伴随对函子,其次给出模n剩余类环上的应用,证明了在模n剩余类环上这样的函子伴随对具有拟逆关系. Given two homomorphisms of ringsj1:R1→R' and j2:R2→R' , a new ring R called the pullback of R1 and R2 over R' is constructed. Let F denote the category whose objects are the triples (M1, M2, α) where Mi∈Ri -Mod, i= 1,2, and a is an R'-isomophism. The funtors P : F→ R -Mod and S : R -Mod→F are proved to be an adjoint pair and have quasi-inverse relation in the special case of the rings of residue classes of modulo integers.
作者 孙舒萌 辛林
出处 《福建师范大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第6期24-27,共4页 Journal of Fujian Normal University:Natural Science Edition
基金 福建省自然科学基金资助项目(Z0511021)
关键词 范畴 拉回环 伴随对 拟逆 category pullback adjoint pair quasi-inverse
  • 相关文献

参考文献8

  • 1Wiseman A N. Projective modules over pullback rings[J]. Math Proc Camb Phil Soc, 1985 (97): 399-406.
  • 2Alberto Facchini, Peter Vamos. Injective modules over pullbacks[J]. London Math Soc, 1985, 31 (2): 425-438.
  • 3Shing Hing Man. Finite injective dimension over pullbacks of local rings [J]. Communications in Algebra, 1994, 22 (8): 3015-3022.
  • 4Shing Hing Man. Finite projective dimension over pullbacks of local rings [J]. Communications in Algebra, 1991, 19 (12):3271-3294.
  • 5Tetsushi Ogoma. Fibre products of noetherian rings and their applications [J]. Math Proc Camb Phil Soc, 1985 (97): 231-241.
  • 6Milnor J. Introduction to algebraic K-theory [M]. New Jersey: Princet on University Press, 1971.
  • 7陈志杰.代数基础[M].上海:华东师范大学出版社,2001.
  • 8潘承洞 潘承彪.初等数论[M].北京:北京大学出版社,2003..

共引文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部