期刊文献+

一种基于约束边界模式的超分辨率图像重构算法

A pattern-based super-resolution image reconstruction algorithm
下载PDF
导出
摘要 超分辨率图像重构是利用多帧低分辨率图像重构出一幅具有更高分辨率图像.一般的凸集投影算法在放大倍数上升时存在两个问题:一是计算复杂性急剧上升,二是边缘振荡效应的加剧导致成像质量迅速恶化.本文针对凸集投影算法,提出了一种基于约束边界模式的算法.实验结果表明,新算法能够在有效抑制边缘振荡效应的同时,较大地提高了重构速度. Super-resolution image reconstruction produces high-resolution image from a set of shifted, blurred and decimated versions thereof. However, known POCS super-resolution algorithms get worse either in computational complexity or ringing artifacts as magnification increases. A pattern-based algorithm is proposed. Experiment results demonstrate that is more efficient and can suppress ringing artifacts quite well.
作者 张地 彭宏
出处 《暨南大学学报(自然科学与医学版)》 CAS CSCD 北大核心 2007年第5期461-465,共5页 Journal of Jinan University(Natural Science & Medicine Edition)
基金 国家自然科学基金(60772117) 中国博士后科学基金(20060400218) 广东省科技攻关项目(2005B10101033)
关键词 超分辨率 凸集投影 模式 计算复杂性 super-resolution POCS pattern computational complexity
  • 相关文献

参考文献6

  • 1KIM S P, BOSE N K, VALENZUELA H M. Recursive reconstruction of high resolution image from noisy undersampled miltifames [ J ]. IEEE Trans Acoust, Speech, Signal Processing. 1990,38 (6) : 1013 - 1027.
  • 2ZHANG Di, DU Minghui. Fast hybrid approach to large magnification super- resolution image reconstruction[J]. Optical Engineering, 2005, 44 (3) : 037005 ( 1 - 9 ).
  • 3李慧芳,杜明辉.基于改进的POCS算法的超分辨率图像恢复[J].华南理工大学学报(自然科学版),2003,31(10):24-27. 被引量:21
  • 4MARR D. Vision - A Computational Investigation into the Human Representation and Processing of Visual Information [ M ]. San Francisco : Freeman, 1982.
  • 5MILIAN S, VACLAV H, ROGER B. Image Processing, Analysis and Machine Vision [ M ]. 2nd edition. USA : Thomson, 1997.
  • 6STEVENSON R L, SCHMITZ B E, DELP E. Discontinuity preserving regularization of inverse visual problems [ J]. IEEE Trans Systems, Man and Cybernetics, 1994, 24(3) : 455 -469.

二级参考文献8

  • 1Tsai R Y,Huang T S. Multiframe image restoration and registration [J]. Advances in Computer Vision and Image Processing, 1984,1 ( 1 ) :317 - 339.
  • 2Elad M ,Feuer A. Restoration of a single superresolution image from several blurred, noisy and undersampled measured images [ J]. IEEE Trails on Image Processing,1997,6(11):1 646-1 658.
  • 3Stark H, Oskoui P. High-resolution image recovery from image-plane arrays,using convex projections [ J]. Journal of the Optical Society of America (A), 1989, 6(11):1715-1726.
  • 4Sezan M I, Stark H. Image restoration by the method of convex projections ( Part 2 ) -Applications and numerial results [ J ]. IEEE Transactions on Medical Imaging,1982,MI-1 (2) :99 - 101.
  • 5Tekalp A M, Ozkan M K, Sezan M I. High-resolution image reconstruction from lower-resolution image sequences and space-varying image restoration [ A ]. Proceedings of the IEEE International Conference on Acousics,Speech and Signal Processing (Vol Ⅲ) [ C] ,San Francisco, 1992. 169 - 172.
  • 6Subbarao M, Chi T ,Nikzad A. Focusing techniques [J].Optical Engineering, 1993,32 ( 11 ) :2 824 - 2 836.
  • 7Patti A J,Altunbasak Y. Artifact reduction for set theoretic super resolution image reconstruction with edge adaptive constraints and higher-order interpolauts [ J ]. IEEE Trans on Image Processing,2001,10(10) :179-186.
  • 8CastlemanKR.数字图像处理[M].北京:清华大学出版社,1998..

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部