期刊文献+

并行的贝叶斯网络参数学习算法 被引量:6

Parallel Algorithm for Bayesian Networks Parameter Learning
下载PDF
导出
摘要 针对大样本条件下EM算法学习贝叶斯网络参数的计算问题,提出一种并行EM算法(Parallel EM,PL-EM)提高大样本条件下复杂贝叶斯网络参数学习的速度.PL-EM算法在E步并行计算隐变量的后验概率和期望充分统计因子;在M步,利用贝叶斯网络的条件独立性和完整数据集下的似然函数可分解性,并行计算各个局部似然函数.实验结果表明PL-EM为解决大样本条件下贝叶斯网络参数学习提供了一种有效的方法. Because the EM algorithm requires significant computational resources for Bayesian Networks parameter learning under large databases, the PL-EM algorithm is proposed to improve the learning speed. The PL-EM algorithm parallel computes the posteriori probabilities of hidden variables and expected sufficient statistics at E step,at M step, the algorithm makes use of conditional independence and the decomposability of the likelihood function to parallel compute each local likelihood function. Experimental results show the PL-EM algorithm is an effective method to solve Bayesian parameter learning for large datasets.
出处 《小型微型计算机系统》 CSCD 北大核心 2007年第11期1972-1975,共4页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60575023)资助 教育部博士点基金项目(20050359012)资助.
关键词 贝叶斯网络 EM算法 PL-EM算法 MPI bayesian networks EM algorithm PL-EM algorithm MPI
  • 相关文献

参考文献14

  • 1Zoubin Ghahramani.An introduction to hidden markov models and bayesian networks[J].IJPRAI,2001,15 (1):9-42.
  • 2Cooper G F,Herskovits E.A bayesian method for the induction of probabilistic networks from data[J].Machine Learning,1992,9(4):309-347.
  • 3Heckerman D.A tutorial on learning bayesian networks[J].In M.I.Jordan,Learning in Graphical Models,1998.
  • 4Binder J,Koller D,Russell S,et al.Kanazawa adaptive probabilistic networks with hidden variables[J].Machine Learning,1997,29(2-3):213-244.
  • 5Lauritzen S L.The EM algorithm for graphical association models with missing data[J].Computational Statistics and Data Analysis,1995,19(2):191-201.
  • 6Tian Feng-zhan,Zhang Hong-wei,Lu Yu-chang.Learning bayesian networks from incomplete data based on EMI method[C].ICDM 2003,323-330.
  • 7Bo Thiesson,Christopher Meek.David Heckerrnan:accelerating EM for large databases[J].Machine Learning,2001,45 (3):279-299.
  • 8Neal R,Hinton G.A view of the EM algorithm that justifies incremental,sparse,and other variants[C].Learning in Graphical Models,The Netherlands Kluwer Academic Publishers,1998,355-371.
  • 9Pedro E.López-de-Teruel,José M,et al.Acacio:the parallel EM algorithm and its applications in computer vision[C].PDPTA 1999,571-578.
  • 10Wei-Min Jeng,Shou-Hsuan Stephen Huang.Inter-iteration optimization of parallel EM algorithm on message-passing multicomputers[C].In Proceedings:IEEE International Conference on Parallel Processing,1998,245-252.

同被引文献60

引证文献6

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部