期刊文献+

H_2/O_2/Ar可燃气体激光诱导火花点火的实验研究 被引量:2

原文传递
导出
摘要 对H2/O2/Ar可燃气体激光诱导火花点火进行了实验研究.采用Nd:YAG激光器产生的532nm激光聚焦击穿气体点火,并采用激光高速纹影系统对不同初压、激光点火能量、氩稀释度可燃气体点火的火焰结构进行了流场显示.结果表明,气体击穿形成椭球形等离子体,稀疏波与等离子体作用,在等离子体迎光侧和背光侧分别形成一对反旋的螺旋环,导致等离子体和随后的火焰面向内弯缺,在等离子体左侧激光轴附近形成一个向外凸出的气瓣.等离子体的高温气体诱导火花核的形成,受壁面反射弱激波或压缩波的作用,初始层流火焰减速.弧形火焰阵面与壁面的作用及其与激波或压缩波、稀疏波等作用,导致层流火焰向湍流火焰转捩.对摩尔比为2:1:10、初压为53.33kPa,激光诱导火花点火的激光器最小输出能量为15mJ.随预混气初压的升高,激光点火能量越高,降低氩稀释度,会加快火焰阵面传播速度.
出处 《中国科学(E辑)》 CSCD 北大核心 2007年第11期1461-1468,共8页 Science in China(Series E)
  • 相关文献

参考文献17

  • 1Phuoc T X. Laser-induced spark ignition fundamental and applications. Opt Lasers Eng, 2006, 44:351--397.
  • 2Weinberg F J, Wilson J R. A preliminary investigation of the use of focused laser beams for minimum ignition energy studies. Proc Roy Soc Lond A, 1971, 321:41--52.
  • 3Kingdon R G, Weinberg F J. The effect of plasma constitution on laser ignition energies. 16th Symposium (International) on Combustion. Pittsburgh: the Combustion Institute, 1977:747--756.
  • 4Lee J H, Knystautas R. Laser spark ignition of chemically reactive gases. AIAA J, 1969, 7:312- 317.
  • 5Syage J A, Fournier E W, Rianda R, et al. Dynamics of flame propagation using laser-induced spark initiation: Ignition energy measurements. J Appl Phys, 1988, 64:1499 -1507.
  • 6Santavicca D A, Ho C, Reilly B J, et al. Laser Induced Spark Ignition of Methane-Oxygen Mixtures. NASA CR-188689, 1991.
  • 7Spiglanin T A, MCilroy A, Fournier E W, et al. Time-resolved imaging of flame kernels: Laser spark ignition of H2/O2/Ar mixtures. Combust Flame, 1995, 102:310- 328.
  • 8Lee T W, Jain V, Kozola S. Measurements of minimum ignition energy by using laser sparks for hydrocarbon fuels in air: Propane, dodecane, and Jet-A fuel. Combust Flame, 2001, 125:1320--1328.
  • 9Beduneau J L, Kim B, Zimmer L, et al. Measurements of minimum ignition energy in premixed laminar methane/air flow by using laser induced spark. Combust Flame, 2003, 132:653- 665.
  • 10Bradley D, Sheppard C G W, Suardjaja I M, et al. Fundamentals of high energy spark ignition with lasers. Combust Flame, 2004, 138:55--77.

二级参考文献28

  • 1胡艳,沈瑞琪,叶迎华.激光点火过程的一维有限差分模型比较[J].火工品,2000(3):1-5. 被引量:3
  • 2李金明,李文钊,丁玉奎.含能材料激光点火特征研究[J].军械工程学院学报,2002,14(2):22-24. 被引量:1
  • 3孙同举,沈瑞琪,戴实之.激光点火过程的数值模拟[J].应用激光,1996,16(3):110-112. 被引量:15
  • 4牛和林.新型固体含能材料点火与燃烧特性研究[硕士论文].中国科学技术大学,2001..
  • 5B. N. Kondrikov, S. Cristoforetti, I. V. Grebenyuk et al..Gasification of solid propellants and propellant ingredients under influence of thermal radiation [C]. Proc. 32^nd International Annual Conference of ICT, Karlsruhe 2001, V6-1-V6-15.
  • 6Ye Yinghua, Shen Ruiqi, Dai Shizhi. Study on the electrical conductivity of combustion flame [C]. Proc. 26^th International Pyrotechnics Seminar, Nanjing 1999. 568-572.
  • 7D. W. Ewick. Finite difference model for laser diode ignited components[C]. Proceedings of the 15th International Pyrotechnic Seminar, 1990:277-295.
  • 8R. D. Skocyper, A R Skocyper, A R Mahoney, et al. Modeling laser ignition of explosives and pyrotechnics effects and characterization of radiative transfer[C]. Proceedings of the 16th International Pyrotechnic Seminar, 1991:877-888.
  • 9W. Ewick. Improved 2-D finite difference model for laser diode ignited components[C]. Proceedings of the 18th International Pyrotechnic Seminar, 1994:255-266.
  • 10陈旦鸣.激光引爆掺杂敏化炸药的研究[J].兵器激光,1982,(2):7-11.

共引文献27

同被引文献22

  • 1Basevich V Y, Belyaev A A. Calculation of the increase in velocity of hydrogen-oxygen flame with addition of singlet oxygen[J]. Khim Fiz, 1989, 8(8): 1124-1127.
  • 2Brown R C. A theoretical study of vibrationally induced reactions in combustion processes[ J]. Combust Flame, 1985, 62(1) : 1-12.
  • 3Liedl G, Schuticker D, Geringer B, et al. Laser induced ignition[ C]//Proc SPIE. USA: SPIE, 2007 : 63461K1-7.
  • 4Lukhovitskii B I, Starik A M, Titova N S. Activation of chain processes in combustible mixtures by laser excitation of molectdar vibrations of reactants [ J ]. Combustion, Explosion, and Shock Waves, 2005, 41 (4): 386-394.
  • 5Smith G P , Golden D M, Frenklach M, et al. GRI-Mech 3.0 combustion model [ EB/OL ]. http://www, me. berkeley. edu/gri_mech/, 1999-70-30.
  • 6Trajmar S, Willams W, Kuppermann A, et al. Angular dependence of electron impact excitation cross sections of O2 [J]. The Journal of Chemical Physics, 1972, 56 (8): 3759-3765.
  • 7Starik A M, Titova N S. Possibility of initiation of combustion of CH4-O2 (Air) mixtures with laser-induced excitation of O2 molecules [ J ]. Combustion, Explosion, and Shock Waves, 2004, 40(5) : 499-510.
  • 8Ddyukov A I, Kulagin Y A, Shelepin L A, et al. Analysis of the rates of the processes involving singlet oxygen molecules [ J ]. Soy J Quantum Electron, 1989, 19 (5) : 578-585.
  • 9Starik A M, Titova N S, Loukhovitski B I. Laser-induced excitation of target molecules as an efficient approach to control the combustion and technological chemical processes[ C ]//Proc SPIE. USA : SPIE, 2006, 60530V : 1-12.
  • 10Starik A M, Titova N S. Onitiation of combustion and detonation by laser induced electronical excitation of O2 molecules to the a^1 △g and b^1 ∑g^+ states[C]//Proc SPIE. USA: SPIE, 2002, 4760: 609-620.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部