期刊文献+

HMM自适应法在应力变异语音识别系统的应用

Adaptation approach based on HMM and its application in G-Force stress speech recognition
下载PDF
导出
摘要 为了使应力变异在顽健语音识别系统中能够达到较好的识别效果,研究了基于隐马尔可夫模型(HMM)的自适应技术,提出了将最大后验概率(MAP)和最大似然回归方法(MLLR)用于应力变异语音的自适应中。实验结果表明,与基本系统相比,两种方法均有效地提高系统识别率。以SD为初始模型的最大后验概率方法在150个训练样本时识别效果最好,可以达到90.4%。 In order to achieve the better effect on G-Force stress in robust speech recognition system, this paper, with an emphasis on the self-adaptation techniques based on HMM model, introduces the application of the maximum a posteriori and maximum likelihood linear regression algorithms in G-Force stressful speech adaptation. Compared with baseline system, the two approaches enable such an effective improvement in the performance of system that the best recognition rate is up to 90.4% with 150 training tokens on SD initial model by maximum a posteriori.
出处 《黑龙江科技学院学报》 CAS 2007年第5期368-372,共5页 Journal of Heilongjiang Institute of Science and Technology
关键词 语音识别 自适应技术 最大后验概率方法 最大似然线性回归方法 speech recognition self-adaptation maximum a posteriori maximum likelihood linear regression
  • 相关文献

参考文献10

  • 1ZAVALIAGKOS G.Maximum a posteriori adaptation techniques for speech recognition[D].Boston:Northeastern Univ.,1995.
  • 2ROZZI W A M.Speaker adaptation in continuous speech recognition via estimation of correlated mean vectors[D].Pittsburgh:Carnegie Mellon Univ.,1991.
  • 3SHINODA K,LEE C H.A structural bayes approach to speaker adaptation[J].IEEE Trans.on Speech and Audio Processing,2001,9(3):276 -287.
  • 4AHADI S M,WOODLAND P C.Rapid speaker adaptation using model prediction[C].Detroit:ICASSP,1995,1:684 -687.
  • 5LEGGETTER C J.Improved acoustic modeling for HMMs using linear transformations[D].Cambridge:Cambridge Univ.,1995.
  • 6COX S.Speaker adaptation in speech recognition using linear regression techniques[J].Electronics Letters,1992,28 (22):2093 -2094.
  • 7GALES M J F,PYE D,WOODLAND P C.Variance compensation within the MLLR framework for robust speech recognition and speaker adaptation[C].Philadelphia:ICSLP,1996,3:1 832 -1 835.
  • 8SANKAR A,LEE C H.Maximum likelihood approach to stochastic matching for robust speech recognition[J].IEEE Trans.on Speech and Audio Processing,1996,4(1):190 -192.
  • 9SURENDAN A C,LEE C H,RAHIM M.Nonlinear compensation for stochastic matching[J].IEEE Trans.on Speech and Audio Processing,1999,7(6):643 -655.
  • 10HUO Q,CHAN C,LEE C H.Bayesian adaptive learning of the parameters of hidden Markov model for speech recognition[J].IEEE Trans.on Speech and Audio Processing,1995,3 (5):334 -345.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部