期刊文献+

摆振动方程奇调和解的存在性

Existence of periodic solution of pendulum oscillation equation
下载PDF
导出
摘要 针对摆型振动模型中的数学问题,分别采用上下解方法、单调迭代法及Schauder不动点定理研究了摆型振动模型的二阶半线性微分方程奇调和解的存在性。证明结果和实例表明,该奇调和解问题中至少存在一个奇性解。 Aimed at the mathematic problem in the model of the pendulum oscillation, the paper introduces the study on the existence of odd-harmonic solutions to second order semi-linear differential equation which describes the model of the pendulum oscillation by using upper and lower solution method monotone iterative technique and the Schauder fixed point theorem respectively. The results and the practical example show the existence of at least one odd solution to the odd-harmonic problem.
作者 郑春华
出处 《黑龙江科技学院学报》 CAS 2007年第5期389-393,共5页 Journal of Heilongjiang Institute of Science and Technology
关键词 摆型振动方程 奇调和解 上下解方法 单调迭代法 SCHAUDER不动点定理 pendulum oscillation equation odd-harmonic solution upper and lower solution method monotone iterative technique Schauder fixed point theorem
  • 相关文献

参考文献6

  • 1MAWHIN J.Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations[J].Differential Equations,1984,52(2):264 -287.
  • 2MAWHIN J.The forced pendulum:a paradigm for nonlinear analysis and dynamical systems[J].Expo.Math.,1988,6(3):271-287.
  • 3NAKAJIMA F.Some conservative pendulum equation with forcing term[J].Nonlinear Analysis,1998,34(7):1 117 -1 121.
  • 4ORTEGA R.Counting periodic solutions of the forced pendulum equation[J].Nonlinear Analysis,2000,42(6):1 055-1 062.
  • 5PINSKY M A,ZEVIN A A.Oscillations of a pendulum with a periodically varying length and a model of swing[J].Non-linear Mechanics,1999,34(1):105-109.
  • 6郭大均 孙经先 刘兆理.非线性常微分方程泛函方法[M].济南:山东科技出版社,1995..

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部