摘要
本文研究了幂零表代数的一个有趣的性质,利用表代数的Jordan-Hlder型定理,证明了表代数满足幂零被幂零扩张仍是幂零的,但有限幂零群没有这样的扩张.
In this paper, we study an interesting property of nilpotent table algebra. By using Jordan-HOlder type theorem of table algebras, we prove that table algebras satisfying nilpotent extension condition are nilpotent, which does not correspond to extension problems of nilpotent groups exactly.
出处
《数学杂志》
CSCD
北大核心
2007年第6期641-644,共4页
Journal of Mathematics
基金
Supported by NSF of China(10471085)
关键词
表代数
幂零表代数
表子群
table algebra
nilpotent table algebra
table subset