期刊文献+

a尺度正交小波的Mallat算法 被引量:7

THE MALLAT ALGORITHM OF ORTHONORMAL WAVELETS WITH DILATION FACTOR a
下载PDF
导出
摘要 本文研究了a尺度正交小波的Mallat算法,利用a重多分辨分析,得到了正交小波的分解与重构算法,给出了Haar小波的Mallat算法的矩阵表示,并简化了计算. In this paper, we study the Mallat algorithm of orthonormal wavelets with dilation factor α. Using the theory of a multiplicity a multiresolution analysis, we get the decomposition and reconstruction algorithm of orthonormal wavelets. The matrix representation of Mallat algorithm corresponding to Haar wavelet is given, which simplifies the computation.
出处 《数学杂志》 CSCD 北大核心 2007年第6期664-668,共5页 Journal of Mathematics
基金 国家自然科学基金资助项目(40571102)
关键词 关键词正交小波 多分辨分析 MALLAT算法 orthonormal wavelet multiresolution analysis Mallat algorithm
  • 相关文献

参考文献10

  • 1ChuiC.K.著.程正兴译.小波分析导论[M].西安:西安交通大学出版社,1994.
  • 2Daubechies I.. Ten Lectures on Wavelets[M]. Philadephia:SIAM, 1992.
  • 3Mallat S.. Multiresolution Approximations and Wavelet Orthonormal Bases of L^2 (R)[J]. Trans. Amer. Math. Soc, 1989,315(1):69-87.
  • 4Mallet S.. A Theory for Multiresolution of Signal Decomposition: The Wavelet Represemtation[J]. IEEE Trans. PAMI, 1989,11 (7): 674-693.
  • 5Quak E. , Weyrich N.. Decomposition and Reconstruction Algorithms for Spline Wavelets on a Bounded Interval[J]. Applied and Computational Harmonic Analysis, 1994,1(3) : 217-231.
  • 6Beylkin G., Coifman R., Rokhlin V.. Fast Wavelet Transforms and Numerical Algorithms I[J]. Commun. Pure and Applied Mathematics, 1991,44(2) : 141-183.
  • 7Vetterli M.. Wavelets, Approximation and Compression[J]. IEEE Signal Processing Magazine, 2001,18(5):59-73.
  • 8Donoho D. L. , Vetterli M. , DeVore R. A. , Daubechies I.. Data Compression and Harmonic Analysis[J]. IEEE Trans. Information Theory, 1998,44(6) :2435-2476.
  • 9Alpert B.. A Class of Bases in L^2 (R) for The Sparse Representation of Integral Operators[J]. SIAM J. Math. Analysis 1993, 24.
  • 10杨守志,程正兴.紧支撑正交小波的构造[J].工程数学学报,1998,15(2):23-28. 被引量:11

共引文献10

同被引文献48

引证文献7

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部