期刊文献+

微分形式的亚椭圆性

THE HYPOELLIPTICITY OF DIFFERENTIAL FORMS
下载PDF
导出
摘要 本文研究了光滑流形上微分形式的亚椭圆性,利用遍历平均的方法,得到了二维环面上变系数1-形式是亚椭圆的充要条件. This paper chiefly studies the hypoellipticity of differential forms on a manifold, then obtains a necessity and sufficiency condition about the hypoellipticity of variable coefficient one-form on torus by the Ergodic Theory.
作者 王天波
出处 《数学杂志》 CSCD 北大核心 2007年第6期679-683,共5页 Journal of Mathematics
基金 上海市教委基金资助项目
关键词 微分形式 亚椭圆性 Liouville数 旋转数 Differential Form Hypoellipticity Liouville Number Rotation Number
  • 相关文献

参考文献9

  • 1Greenfield S. J, Wallach N. R.. Global Hypoellipticity and Liouville Numbers [J]. Proc. Amer. Math. Soc., 1972,31(1):112-114.
  • 2Chen Wenyi, Chi M.Y.. Hypoelliptic vector fields and almost periodic motions on the torus T[J]. Coom. P. D. E. , 2000,1-2.
  • 3Bergamasco A., Cordaro P., Malagutti P.. Globally Hypoelliptic Systems of Vector Fields[J]. Funct. Analysis, 1993,114:267-285.
  • 4Arnold V.I.. Geometrical Methods in the Theory Ordinary Differential Equations [M]. Berlin: Springer-Verlag, Beijing: 1983.
  • 5Lin Fanghua, Yang Xiaoping. Geometric Measure Theory-An Introduction [M]. Beijing: Science Press, 2002.
  • 6Meziani A.. Hypoellipticity of nonsingular closed 1-forms on compact manifolds [J]. Coom. P. D. E. ,2002,27(7-8) :1255-1269.
  • 7Hofer.. Pseudoholomophic Curve in Sympletizations with applications to the Weinstein Conjecture in dimension three [J]. Invent. Math. , 1993,114(3) :515-563.
  • 8Yoccoz J. C.. Conjugasion differentiable des diffeomophism du cercle le nombre de rotation verifie une condition Diophantine [J]. Ann. Scint. Ec. Norm. Sup. ,4° serie t. 1984,17..337-359.
  • 9Greenfield S.J. , Wallach N. R.. Globally hypoelliptic vector fields[J]. Topology, 1973,12:247-254.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部