期刊文献+

冷泉渗漏区海底微生物作用及生物标志化合物 被引量:13

BIOMARKERS AND BACTERIAL PROCESSES IN THE SEDIMENTS OF GAS SEEP SITE
下载PDF
导出
摘要 在有冷泉活动和水合物产出的海底环境中,甲烷氧化古细菌和硫酸盐还原细菌十分发育,它们主导着海底天然气(主要是甲烷)的缺氧氧化作用,并在海底碳循环和生物种群繁衍中发挥着重要作用。海底天然气渗漏活动区的甲烷氧化古细菌使渗漏CH4缺氧氧化为HCO3-,硫酸盐还原细菌使SO42-转化为HS-,从而使细菌微生物获得生命所需的能量,生物种群得以发育和繁衍。甲烷氧化古细菌有ANME-1、ANME-2、ANME-3三个种群,形成相应的醚类异戊二烯类和类异戊二烯烃类生物标志物。硫酸盐还原细菌有Desulfosarcina和Desulfococcus两个主要的细菌群落,形成二烃基甘油二醚和脂肪酸生物标志化合物。这种天然气渗漏区内微生物活动产生的生物标志化合物都具有特别负的碳同位素组成,δ13C值为-41.1‰^-95.6‰,说明微生物群落在生命代谢过程中摄取了来自甲烷的碳,同时也反映了天然气渗漏系统缺氧带存在的古细菌和硫酸盐还原细菌活动。 Methane oxidizing archea (MOA) and sulfate reducing bacteria (SRB) are abundant in cold seep and hydrate sites, where dominant anaerobic oxidation of methane played an important role in the sea carbon cycle and microbial propagation. MOA oxidizes methane into HCO3^- and SRB reduces SO4^2- into HS- at gas seep site, which is anaerobic, and microbes obtain energy here for living and growth. At least MOA consists of three colonies : ANME-1, ANME-2 and ANME-3, showed in biomarkers as isoprenoids and free isoprenoid hydrocarbons. There are two colonies of SRB,that is, Desulfosarcina and Desulfococcus. The typical biomarkers produced by SRB are Dialkyl glycerol diethers (DGDs) and fatty acids. All the biomarkers of cold seep sites have very low carbon isotopic compositions which are between -41.1‰- 95.6‰, indicating that the microbes get carbon from CH, and that there are activities of MOA and SRB in anaerobic gas seep sites.
出处 《海洋地质与第四纪地质》 CAS CSCD 北大核心 2007年第5期75-83,共9页 Marine Geology & Quaternary Geology
基金 中国科学院知识创新工程重要方向项目(KZCX3-SW-224) 国家自然科学基金项目(40472059) 广东省自然科学基金项目(05200113) 中国科学院知识创新工程前沿领域项目(GIGCX-04-03)
关键词 生物标志化合物 冷泉 甲烷氧化古细菌 硫酸盐还原细菌 biomarker cold-seep methane oxidizing archea sulfate reducing bacteria
  • 相关文献

参考文献45

  • 1Pancost R D, Chopmans E, Sinninghe J S. Archaeal lipids in Mediterranean Cold Seeps: Molecular proxies for anaerobic methane oxidation [J]. Geochimica et Cosmochimica Acta, 2001, 65:1611-1627.
  • 2王家生,王家生,E.Suess.天然气水合物伴生的沉积物碳、氧稳定同位素示踪[J].科学通报,2002,47(15):1172-1176. 被引量:28
  • 3Hinrichs K U, Hayes J M, Sylva S P, et al. Methane-consuming archaebacteria in marine sediments[J].Nature, 1999, 398:802-805.
  • 4Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature, 2000, 407: 628-626.
  • 5陈多福,陈先沛,陈光谦.冷泉流体沉积碳酸盐岩的地质地球化学特征[J].沉积学报,2002,20(1):34-40. 被引量:100
  • 6Zhang C L, Li Y, Wall J D, et al. Lipid and carbon isotopic evidence of methane oxidizing and sulfate-reducing bacteria in association with gas hydrates from the Gulf of Mexico [J]. Geology, 2002, 30, 239-242.
  • 7Zhang C L, Pancost R D, Sassenc R, et al. Archaeal lipid biomarkers and isotopic evidence of anaerobic methane oxidation associated with gas hydrates in the Gulf of Mexico[J]. Organic Geochemistry, 2003, 34: 827-836.
  • 8Schouten S, Wakeham S G, Sinninghe Damste J S. Evidence for anaerobic methane oxidation by archaea in euxinic waters of the Black Sea [J]. Organic Geochemistry, 2001,32:1277- 1281.
  • 9Elvert M, Suess E, Whiticar. M J, Anaerobic methane oxidation associated with marine gas hydrates,, superlight C-isotopes from saturated and unsaturated C20 and C25 irre-gular isoprenoids[J].Naturwissenschaften, 1999, 86: 295-300.
  • 10Hinrichs K U, Sylva S P, Summons R E, et al. Molecular and isotopic analysis of anaerobic methane oxidizing communities in marine sediments[J], Organic Geochemistry, 2000, 31:1685-1701

二级参考文献104

  • 1陈多福,陈先沛.贵州瓮福磷矿中的硅化作用[J].沉积学报,1993,11(2):58-65. 被引量:9
  • 2韩发,R.W.哈钦森.大厂锡矿床成因综合分析及成矿模式[J].地球学报,1991,18(1):61-80. 被引量:9
  • 3Aloisi G, Pien C, Rouchy J-M, et al. Methane-related authigenic carbonates of eastern Mediterranean Sea mud volcanoes and their possible relation to gas hydrate destabilization [ J ].Earth and Planetary Science Letters, 2000, 184: 231 - 338.
  • 4Peckmann J, Reimer A, Luth U, et al. Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea[J]. Marine Geology, 2001, 177:129-150.
  • 5Joye S B, Boetius A, Orcutt B N, et al. The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps [J]. Chemical Geology, 2004, 205:219 -238.
  • 6Orcutt B N, Boetius A, Lugo S K, et al. Life at the edge of methane ice: microbial cycling of carbon and sulfur in Gulf of Mexico gas hydrates [ J ]. Chemical Geology, 2004, 205:239 - 251.
  • 7Formolo MJ, Lyons TW, Zhang CL, et al. Quantifying carbon sources in the formation of authigenic carbonates at gas hydrate sites in the Gulf of Mexico [ J]. Chemical Geology, 2004, 205:253 - 264.
  • 8Sassen R, Roberts H H, Carney R, et al. Free hydrocarbon gas, gas hydrate, and authigenic minerals in chemosynthetic communities of the northern Gulf of Mexico continental slope:relation to microbial processes [ J]. Chemical Geology, 2004,205: 195 -217.
  • 9Zhang C L, Lanoil B. Geomicrobiology and biogeochemistry of gas hydrates and cold seeps [ J ]. Chemical Geology, 2004,205: 187 - 194.
  • 10Hallam S J, Putnam N, Preston C M, et al. Reverse methanogenesis: testing the hypothesis with environmental genomics[J]. Science, 2004, 305: 1457 - 1462.

共引文献147

同被引文献243

引证文献13

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部