期刊文献+

穿孔机最优导盘转速确定 被引量:1

Determination of Optimal Revs of Piercer's Guide Disc
下载PDF
导出
摘要 穿孔机是无缝钢管生产中的一个重要设备,针对长期以来对其工艺参数进行调整都必须先停止生产,从而大大降低了生产效率的问题,宝钢通过对SWW斜轧穿孔机狄塞尔导盘的改造,实现了穿孔机一个重要工艺参数导盘转速的在线调整.介绍了狄塞尔导盘改造方法,并针对生产现场关心的最优导盘转速问题,在ICA(independent component analysis)算法的基础上,引入回归方法提出了ICR(independent componentregress)算法,建立了穿孔机最优导盘转速模型.实验验证,该模型得到的最优导盘转速可有效提高产品质量和生产效率,降低能耗. Piercer is an integral equipment to seamless steel tube rolling, to which the problem that a pause is necessary when readjusting rolling parameter is unsolvable for long, thus reducing the productivity greatly. Nowadays the BaoSteel has implemented the on-line readjustment of an important rolling parameter, i.e. , the guide disc revs, by rebuilding the Diescher guide disc on SWW skew rolling piercer. Describes the way to rebuild the Diescher guide disc and, based on ICA, the ICR is introduced in solving the optimal revs of the disc. A model is developed for the optimal revs of the disc. Test results show that the optimal revs given by the model can improve both product quality and productivity effectively with energy saving realized.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第11期1525-1528,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(60674063) 教育部流程工业综合自动化重点实验室开发课题基金资助项目
关键词 穿孔机 导盘转速 ICR ICA 建模 piercer guide disc rev ICR (independent component regression) ICA(independent component analysis) modeling
  • 相关文献

参考文献8

  • 1Urbanski S, Kazanecki J. Assessment of the strain distribution in the rotary piercing process by the finite element method[J ]. Mater Process Technol, 1994,45:335 - 340.
  • 2双远华,赖明道.人工神经网络在预测斜轧穿孔毛管偏差中的应用[J].中国有色金属学报,2001,11(5):862-866. 被引量:5
  • 3李连诗.钢管塑性变形原理[M].北京:冶金工业出版社,1985..
  • 4Hyvarinen A. Independent component analysis: algorithms and applications[J ]. Neural Networks, 2002,13: 411 - 430.
  • 5Li R F, Wang X Z. Dimension reduction of process dynamic trends using independent component analysis[J ].Computers and Chemical Engineering, 2002,26:467- 473.
  • 6Chen Q, Wynne R J, Goulding P. The application of principal component analysis and kernel density estimation to enhance process monitoring[J ]. Control Engineering Practice, 2000, 8:531 - 543.
  • 7Wang J, Chang C I. Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis [ J ]. IEEE Transactions on Geoscience and Remote and Remote Sensing, 2006,44:1586 - 1600.
  • 8Kano M, Hasebe S, Hashimoto I, et al. Evolution of multivariate statistical process control application of independent component analysis and external analysis [ J ]. Computers and Chemical Engineering, 2004, 28:1157 - 1166.

二级参考文献10

共引文献23

同被引文献10

  • 1HUANG G B, ZHU Q Y, SlEW C K. Extreme learning machine: a new learning scheme of feedforward neural networks[C]//Proceedings of the International Joint Conference on Neural Networks. Budapest, Hungary: IEEE, 2004:25 - 29.
  • 2ZHU Q Y, QIN A K, SUGANTHAN P N, et al. Evolutionary extreme learning machine[J]. Pattern Recognition, 2005, 38(2): 1759- 1763.
  • 3TAMURA S, TATEISHI M. Capabilities of a four-layered feedforward neural network: four layers versus three[J]. IEEE Transactions on NeuralNetworks, 1997, 8(2): 251 - 255.
  • 4HUANG G B. Learning capability and storage capacity of two-hidden-layer feedforward network[J]. IEEE Transactions on Neural Networks, 2003, 14(2): 274 - 281.
  • 5SERRE D. Matrices: Theory and Applications[M]. New York: Springer, 2002.
  • 6LIANG N Y, HUANG G B. A fast and accurate online sequential learning algorithm for feedforward networks[J]. IEEE Transactions on Neural Networks, 2006, 17(6): 1411 - 1423.
  • 7HUI C, MATS N, SIRKKA L. Evaluation of PCA methods with improved fault isolation capabilities on a paper machine simulator[J]. Chemometrics and Intelligent Laboratory Systems, 2008, 92(3): 186 - 199.
  • 8PENG D Z, ZHANG Y. Dynamics of generalized PCA and MCA learning algorithms[J]. IEEE Transactions on Neural Networks, 2007, 18(6): 1777- 1784.
  • 9BAFFI G, MARTIN E B, MORRIS A J. Non-linear projection to latent structures revisited: the neural network PLS algorithm[J]. Computers & Chemical Engineering, 1999, 23(9): 1293 - 1307.
  • 10李连诗.钢管塑性变形原理[M].北京:冶金工业出版社,1985..

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部