期刊文献+

一种基于平滑窗口法的盲分离复数算法

A Blind Source Separation Algorithm Based on Sliding Window in Complex Domain
下载PDF
导出
摘要 通过对传统盲源分离批处理EASI算法的分析,针对时变信道中通信信号的复数形式,以平滑窗的形式实现了批处理算法在时变混合模型下的应用。通过主分量分析的原理,进行噪声方差估计,改进传统独立分量分析算法消除噪声影响。通过仿真证明,在噪声较大的情况下性能优于传统算法。 Based on an analysis of EASI batch process algorithms for traditional blind source separation, a sliding window ICA algorithm is studied to deal with complex signals in the time variant mixing model. The characteristics of noise are estimated using Primary Component Analysis. The traditional Independent Component Analysis algorithm is improved to eliminate the effect of noise. The experiment results show that this algorithm is better than traditional ones with more noise present.
出处 《电子科技》 2007年第11期8-10,14,共4页 Electronic Science and Technology
关键词 盲源分离 平滑窗 独立分量分析 主分量分析 blind source separation sliding window independent component analysis primary component analysis
  • 相关文献

参考文献1

二级参考文献8

  • 1吴小培,叶中付,沈谦,张道信.在线Infomax算法及其在长记录脑电消噪中的应用[J].电路与系统学报,2005,10(5):83-88. 被引量:3
  • 2A J BellAn in.formation-maximization approach to blind separation and blind deconvolution[J].Neural Computation,1995,7(4):1129-1159
  • 3A Hyvarinen.Fast and robust fixed-point algorithms for independent component analysis[J].IEEE Trans on Neural Networks,1999,10(3):626-634
  • 4T-W Lee.Independent Component Analysis-Theory and Application[M].Boston:Kluwer Academic Press,199827 -64
  • 5N Delfosse.Adaptive blind separation of independent sources:A deflation approach[J].Signal Processing,1995,45(1):59-83
  • 6S I Amari.Supereffeciency in blind source separation[J].IEEE Trans on Signal Processing,1999,47(3):936-944
  • 7D Mandic,A Cichocki.An online algorithm for blind extraction of sources with different dynamical structures[OL].http://www.kecl.ntt.co.jp/icl/signal/ica2003/cdrom/index.htm,2003-04-01
  • 8A Yeredor.An expansion of SOBI for linearly time-varying mixtures[OL].http://www.kecl.ntt.co.jp/icl/signal/ica2003/cdrom/index.htm,2003-04-05

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部