期刊文献+

基于几何位移计算理论的索杆结构成形分析

Shape-Forming Analysis for Cable-Member Structures Based on Geometric-Displacement Computation Theory
下载PDF
导出
摘要 为求解索杆体系在成形过程中存在的几何位移,系统地研究了几何位移计算理论.分别根据余能原理和虚功原理,导出了发生几何位移时系统的变形协调方程和等价不平衡方程,构成了几何位移求解的理论基础;归纳了求解几何位移的3类约束条件:松弛条件,定量约束条件,定向约束条件.几何位移的求解可归结为根据系统等价不平衡方程不断修正几何位移模态、使之满足系统变形协调条件和约束条件的迭代过程.算例分析表明,所研究的理论可准确计算出系统形态变化中的几何位移,实现对索杆体系的成形分析. In order to analyze geometric displacement during shape-forming process of cablemember structures, the theory of geometric-displacement computation is studied. The systemdisplacement harmonic term and equivalent unbalanced equation are deduced based on the complementary energy principle and virtual work principle, respectively. Three types of constraint terms for computation of geometric displacement are concluded, including slack term, fixingquantity term and fixing-direction term. The solution of geometric displacement can be summarized as an iterative computation of geometric-displacement modes based on the equivalent unbalanced equation obeying the system deformable harmonic term and constraint terms. The examples show the theory is able to correctly evaluate geometric displacement for morphologically varying systems, and to successfully simulate the shape-forming process of cable-member structures.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2007年第11期1335-1337,1347,共4页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金重点资助项目(50638050)
关键词 几何位移 索杆结构 成形 余能原理 虚功原理 geometric displacement cable-member structure shape forming complementary energy principle virtual-work principle
  • 相关文献

参考文献9

  • 1Calladine C R, Pellegrino S. First order infinitesimal mechanisms [J]. Int J Solids Structures, 1991,27(4) : 505-515.
  • 2Kumar P, Pellegrino S. Structural computation of kinematics paths and bifurcation points [J]. Int J Solids Structures, 2000,37(46) : 7003-7027.
  • 3Seffen K, You Z, Pellegrino S. Folding and deployment of curved tape springs [J]. Int J Mech Sci, 2000,42(10) : 2055-2073.
  • 4Kuznetsov E N. Underconstrained structural systems [M]. New York: Springer-Verlag, 1991.
  • 5Kuznetsov E N. Orthogonal load resolution and statical-kinematic stiffness matrix [J]. Int J Solids Structures, 1997, 34(28): 3657-3672.
  • 6聂润兔,王学孝,邹振祝,邵成勋.可变几何桁架展开运动学和动力学分析[J].哈尔滨工业大学学报,1997,29(1):33-36. 被引量:3
  • 7林智斌 杨联萍 钱若军.佛山世纪莲体育场索结构监控分析(1).工业建筑,2006,:119-127.
  • 8林智斌.基于几何位移分析的结构理论研究[D].上海:同济大学土木工程学院,2006.
  • 9Pellegrino S, Calladine C R. Matrix analysis of statically and kinematically indeterminate frameworks [J]. Int J Solids Structures, 1986,22(4) : 409-428.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部