摘要
根据连续混沌系统状态变量的数值具有多极值,且极值的大小和位置都是随机的特点,利用状态变量在极值处导数等于零,将混沌动力学微分方程在状态变量的极值点处化为代数方程,结合最小二乘法提出了基于极值点的混沌系统参数估计方法.在获得采样数据的情况下,用该方法对洛伦兹混沌系统的未知参数进行了辨识,并用Matlab软件进行了仿真.抗噪声干扰能力测试结果表明,该方法具有较好的抗干扰能力,可用于估计连续混沌系统未知参数.
The state variables of continuous chaos system present many extreme points and the values and positions of these extreme points are stochastic. According to the characteristic and the derivative of a variable at extreme point equals zero, the dynamical differential equations of chaos systems can be translate to algebraic equations. Based this and least squares approach, a new parameter estimation approach of continuous chaos systems is proposed. When the gained dates are sampling, unknown parameters of Lorenz chaos system are estimate by means of this new method, and the corresponding simulations are given by Matlab. Finally, anti-disturbance performance of this new method is tested, and the results show that the method possess better anti-disturbance performance and can be applied to estimate unknown of continuous chaos systems.
出处
《华中科技大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2007年第9期121-124,共4页
Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金
湖北省教育厅科学技术项目(D200560001)
国家自然科学基金资助项目(60474011)
关键词
参数估计
混沌系统
状态变量
极值
最小二乘法
parameter estimation
chaos system
state variable
extremum
least squares approach