期刊文献+

基于极值点的混沌系统参数估计方法及应用 被引量:1

Estimation of chaos system parameters by using extremum point
下载PDF
导出
摘要 根据连续混沌系统状态变量的数值具有多极值,且极值的大小和位置都是随机的特点,利用状态变量在极值处导数等于零,将混沌动力学微分方程在状态变量的极值点处化为代数方程,结合最小二乘法提出了基于极值点的混沌系统参数估计方法.在获得采样数据的情况下,用该方法对洛伦兹混沌系统的未知参数进行了辨识,并用Matlab软件进行了仿真.抗噪声干扰能力测试结果表明,该方法具有较好的抗干扰能力,可用于估计连续混沌系统未知参数. The state variables of continuous chaos system present many extreme points and the values and positions of these extreme points are stochastic. According to the characteristic and the derivative of a variable at extreme point equals zero, the dynamical differential equations of chaos systems can be translate to algebraic equations. Based this and least squares approach, a new parameter estimation approach of continuous chaos systems is proposed. When the gained dates are sampling, unknown parameters of Lorenz chaos system are estimate by means of this new method, and the corresponding simulations are given by Matlab. Finally, anti-disturbance performance of this new method is tested, and the results show that the method possess better anti-disturbance performance and can be applied to estimate unknown of continuous chaos systems.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第9期121-124,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 湖北省教育厅科学技术项目(D200560001) 国家自然科学基金资助项目(60474011)
关键词 参数估计 混沌系统 状态变量 极值 最小二乘法 parameter estimation chaos system state variable extremum least squares approach
  • 相关文献

参考文献11

  • 1Chen S H, Hu J, Lu J H. Adaptive synchronization of uncertain Rossler hyperchaotic system based on parameter identification[J]. Phys Lett A, 2004, 321: 50-55.
  • 2Zhou J, Chen T P, Xiang L. Robust synchronization of delay neural networks based on adaptive control and parameters identification[J]. Chaos, Solitons and Fractals, 2006, 27: 905-913.
  • 3Ge Z M, Leu W Y. Chaos ,synchronization and parameter identification for loudspeaker systems [J].Chaos, Solitons and Fractals, 2004, 21:1 231-1 247.
  • 4关新平,彭海朋,李丽香,王益群.Lorenz混沌系统的参数辨识与控制[J].物理学报,2001,50(1):26-29. 被引量:76
  • 5Lu J H, Zhang S C. Controlling Chen's chaotic attractor using backstepping design based on parameters identification[J]. Phys Lett A, 2001,286:148-152
  • 6王绍明,岳超源,廖晓昕,罗海庚.基于观测器的Lorenz混沌系统参数辨识[J].武汉理工大学学报,2006,28(12):120-123. 被引量:3
  • 7Baker G L, Gollub J P, Blackburn J A. Inverting chaos: extracting system parameters from experimental data[J]. Chaos, 1996, 6: 528-533.
  • 8Meyer R, Christensen N. Bayesian reconstruction of chaotic dynamical systems[J]. Phys Rev E, 2000, 62:3 535-3 542.
  • 9Palaniyandi P, Lakshmanan M. Estimation of system parameters and predicting the flow function from time series of continuous dynamical systems[J]. Phys Lett A, 2005, 338: 253-260.
  • 10Li L X, Yang Y X, Peng H P, et al. Parameters identification of chaotic systems via chaotic ant swarm[J]. Chaos, Solitons and Fractals, 2006, 28: 1 204-1 211.

二级参考文献16

  • 1Pecora L M,Carrol T L.Synchronization in Chaotic System[J].Phys Rev Lett,1990,64:821-824.
  • 2Chen G,Dong X.From Chaos to Order:Methodologies,Perspectives and Applications[M].Singapore:World Scientific,1998.
  • 3Liu F,Ren Y,Shan X,et al.A Linear Feedback Synchronization Theorem for a Class of Chaotic Systems[J].Chaos Solitons and Fractals,2002,13:723-730.
  • 4Chen M,Han Z.Controlling and Synchronization Chaotic Genesio System via Nonlinear Feedback Control[J].Chaos Solitons and Fractals,2003,17:709-716.
  • 5Yassen M T.Adaptive Control and Synchronization of a Modified Chua's Circuit System[J].Appl Math Comput,2003,135:113-128.
  • 6Parlitz U.Estimating Model Parameters from Time Series by Autosynchronization[J].Phys Rev Lett,1996,76:1232-1235.
  • 7Chen S H,Hu J,Lü J H.Adaptive Synchronization of Uncertain Rossler Hyperchaotic System Based on Parameter Ddentification[J].Phys Lett A,2004,321:50-55.
  • 8Meyer R,Christensen N.Bayesian Reconstruction of Chaotic Dynamical Systems[J].Phys Rev E,2000,62:3535-3542.
  • 9Baker G L,Gollub J P,Blackburn J A.Inverting Chaos:Extracting System Parameters from Experimental Data[J].Chaos,1996(6):528-533.
  • 10Palaniyandi P,Lakshmanan M.Estimation of System Parameters and Predicting the Flow Function from Time Series of Continuous Dynamical Systems[J].Phys Lett A,2005,338;253-260.

共引文献76

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部