期刊文献+

渐近非扩张映象具误差的迭代集合序列收敛问题

Convergent Problem of Iterative Set Sequence with Errors for Asymptotically Nonexpansive Mappings
下载PDF
导出
摘要 采用带误差的Ishikawa迭代型点序列逼近的方法研究了Banach空间中渐近非扩张映象不动点的迭代逼近问题,在一般条件下,得到了迭代集合序列{Qn}强收敛于T的不动点集F(T)的充要条件.所得结果改进和发展了已知的研究结果. In this paper leting be a Banach space and leting be a proximinal subset of, leting be asymptotically nonexpansive mappings, under geneal condition, it is proved that the tierative set sequence with errors converges strongly to the set of mapping. This paper mainly uses three lemmas and the method,which the belt error an Ishikawa iteration sequence approaches, to study the queation which is appoximative processe of iteration sequence with errors for asymptotically nonexpansive mappings in the Banach space. The obtained result is improved and some people's newest achievements have been developed.
出处 《甘肃联合大学学报(自然科学版)》 2007年第6期14-18,共5页 Journal of Gansu Lianhe University :Natural Sciences
基金 海南省自然科学基金(80601)
关键词 邻近子集 渐进非扩张映象 迭代集合序列 渐进规律性 不动点集 a proximinal subset asymptotically nonexpansive mapping iterative set suquences asymptotically regularity set of fixed points
  • 相关文献

参考文献4

二级参考文献37

  • 1[6]XU Hong-kun.A note on the Ishikawa iteration scheme[J].J Math Anal Appl,1992,167(2):582-587.
  • 2[7]Rhoades H E.Comments on two fixed point iteration methods[J].J Math Anal Appl,1976,56(2):741-750.
  • 3[8]Naimpally S A, Singh K I.Extensions of some fixed point theorems of Rhoades[J].J Math Anal Appl,1983,96(2):437-446.
  • 4[9]LIU Qi-hou.On Naimpally and Singh's open questions[J].J Math Anal Appl,1987,124(1):157-164.
  • 5[10]LIU Qi-hou.A convergence theorem of the sequence of Ishikawa iterates for quasi-contractive mappings[J].J Math Anal Appl,1990,146(2):301-305.
  • 6[11]Takahashi W.A convexity in metric space and nonexpansive mappings Ⅰ[J].Kodai Math Sem Rep,1970,22(1):142-149.
  • 7[1]Chang Shi-sheng, Cho Y J, Jung J S, et al.Iterative approximations of fixed points and solutions for strongly accretive and strongly pseudo-contractive mappings in Banach spaces[J].J Math Anal Appl,1998,224(1):149-165.
  • 8[2]Ciric L B.A generalization of Banach's contraction principle[J].Proc Amer Math Soc,1974,45(1):267-273.
  • 9[3]Chidume C E.Convergence theorems for strongly pseudo-contractive and strongly accretive mappings[J].J Math Anal Appl,1998,228(1):254-264.
  • 10[4]Chidume C E.Global iterative schemes for strongly pseudo-contractive maps[J].Proc Amer Math Soc,1998,126(9):2641-2649.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部