期刊文献+

一类参数曲线正则性的判别

Method for Determining the Regularity of Bézier Curves
下载PDF
导出
摘要 Bézier曲线的正则性,完全由它的控制顶点决定.理想的情况是由Bézier曲线的控制顶点的几何关系,就可以判断它的正则性.本文由Bézier曲线的导矢曲线在[0,1]不等于零这些代数条件,推导出了与之等价的Bézier曲线的控制顶点之间的几何关系,即只需知道顶点之间的相对位置或计算相邻线段的斜率就可快速判断Bézier曲线的正则性.最后给出了数值例子. The regularity of Bézier curve is determined by its control points. Perfect situation is that we can determine the regularity of Bézier curve according to the geometry relation of control points. In this paper, we get geometry relation between the points of Bézier curves by its derivative curves which is not equal to zero during the interval 0 and 1, we only need to know the opposite location of control points or compute the slopes of bordered lines, then we can determine the regularity of Bézier curve quickly. There is no need to determine whether the origin is on the derivative curve. Some numerical examples are given.
出处 《大学数学》 北大核心 2007年第5期79-83,共5页 College Mathematics
关键词 正则性 导矢曲线 BÉZIER曲线 凸包 regularity tangent curve Bézier curve convex hull property
  • 相关文献

参考文献6

  • 1Farin G.Curves and surfaces for computer aided geometric design-a practical guide (2nd Edition)[M].San Diego:Academic Press,1990:261-263.
  • 2Yamaguchi Y.Differential properties at singular points of parametric surfaces.In P.Brunet,C.M.Hoffmann,and D.Roller,editors,CAD-Tools and Algorithms for Product Design,pages 211-221.Sprinfer,2000.
  • 3鲍虎军,王青,等.Bézier曲线曲面正则性的判别条件.第二届全国几何设计与计算学术会议,2005.
  • 4Nicholas M.Patrikalakis,Takashi Maekawa.计算机辅助设计与制造中的分形分析[M].机械工业出版社,2005:49-51.
  • 5潘永娟,王国瑾.一类平面参数曲线的保单调插值[J].软件学报,2003,14(8):1439-1447. 被引量:17
  • 6王国谨.计算机辅助几何设计[M].北京:高教出版社,施普林格出版社,2001.1-17.

二级参考文献14

  • 1Farin G. NURB Curves and Surfaces. Boston: Peters AK, 1995.
  • 2Farin G. Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide. 2th ed., San Diego: Academic Press,1990.
  • 3Goodman TNT, Unsworth IC Manipulating shape and producing geometric continuity in β-spline curves. IEEE Computer Graphics and Applications, 1986,6:50--56.
  • 4Costantini P. On monotone and convex spline interpolation. Mathematics of Computation, 1986,46:203-214.
  • 5Ancher JC, Gruyer E. Two shape preserving lagrange C^2-interpolants. Numerische Mathematilc, 1993,64:1- 11.
  • 6Manni C, Sablonnière P. Monotone interpolation of order 3 by C^2 cubic splines. IMA Journal of Numerical Analysis, 1997,17(2):305-320.
  • 7Lavery JE. Univariate cubic Lv splines and shape-preserving, multiscale interpolation by univariate cubic L1 splines. Computer Aided Geometric Design, 2000,17(4):319-336.
  • 8Lavery, JE. Shape-Preserving, multiscale interpolation by univariate curvature-based cubic L1 splines in Cartesian and polar coordinates. Computer Aided Geometric Design, 2002,19(4):257-273.
  • 9Cai ZJ. Convergence, error estimation and some properties for four-point interpolation subdivision scheme. Computer Aided Geometric Design, 1995,12(5):459-468.
  • 10Kuijt F, Van Damme R. Monotonicity preserving interpolatory subdivision schemes. Journal of Computational and Applied Mathematics, 1999,101 (1-2):203-229.

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部