期刊文献+

若干图的点强全着色

The Vertex Strong Total Coloring of Some Graphs
下载PDF
导出
摘要 图G(V,E)的一正常k-全着色σ称为G(V,E)的一个k-点强全着色,当且仅当v∈V(G),N[v]中的元素着不同颜色,其中N[v]={u|vu∈E(G)}∪{v}.并且vχsT(G)=min{k|存在G的一个k-点强全着色}称为G(V,E)的点强全色数.本文得到了一些特殊图的点强全色数χvTs(G),并提出猜想:对于简单图G,有k(G)≤χvTs(G)≤k(G)+1,这里k(G)表示图G中所有顶点间距离不超过2的点集的最大顶点数. A proper k-total coloring a of graph G(V,E) is called a k-vertex strong total coloring of G(V,E) if and only if for arbitary v∈V(G), the elements in N[v] are colored with different colors, where N[v] = {u| vu∈E(G)} U {v} and χT^vs (G) =min{k|there is a k-vertex strong total coloring of G} is called the vertex strong total chromatic number of G. In this paper, we obtain the vertex strong total chromatic number χT^vs (G) of some special graphs and present a conjecture; For simple graph G, has k(G)≤χT^vs(G)≤k(G)+ 1, where k(G) denotes the maximum value of the element of all such vertices set where the distance between each two vertices is at most 2.
作者 刘景发
出处 《大学数学》 北大核心 2007年第5期93-96,共4页 College Mathematics
基金 国家自然科学基金项目(10471051) 湖南省教育厅科学基金项目(05C649)
关键词 点强全着色 点强全色数 graph vertex strong total coloring vertex strong total chromatic number
  • 相关文献

参考文献6

二级参考文献15

  • 1刘红美,陈泽乾.广义K(4,n)图和Griozsch图Gn边着色分类[J].数学杂志,1996,16(4):531-533. 被引量:3
  • 2[1]Harary,F. , Conditional colorability in graphs,in Graphs and Application,Proc. First Colorado Symp.Graph Theory,John Wiley & Sons Inc. ,New York, 1985.
  • 3[2]Favaron,Odile, Hao Li and R. H. Schelp, Strong edge coloring of graphs, Discrete Mathematics, 159(1996),103-109.
  • 4[3]Burns A. C. , Vertex-distinguishing Edge-coloring, Ph. D. Dissertation, Memphis State University,1993.
  • 5[4]Chartrand, Gary, Linda Lesniak-Foster, Graphs and Digraphs, ind. edition Wadsworth Brooks/Cole,Monterey,CA(1986).
  • 6[5]Nelson,Roy and Robin J. Wilson,Graph Colorings,Pitman Research Notes in Mathematic Series,218.
  • 7[6]Bondy,J. A. and Murty,U. S. R. ,Graph theory applications,The Macmillan Press Ltd. , 1976.
  • 8[7]Halin,R. ,Stuties on minimal n-connected graph,Comb. Math. and Its Applications,Proc. conf. Oxford,1969.
  • 9[8]Zhang Zhongfu,Liu Linzhong,A note on the total chromatics Number of Halin-graph with △(G)≥4,Appl. Math. Lett , 11:5(1998) ,23-27.
  • 10[9]Zhang Zhongfu and Liu Linzhong, On the complete chromatic number of Halin Graphs, AcataMathematicae Applicatae Sinica, 13: 1 (1997), 102~ 106.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部