摘要
Based on Kukhtarev's equations, we derive the formulae of intensity-coupling coefficient, the phase-coupling coefficient and the group velocity at large modulation depth. It is theoretically shown that the signal beam can be amplified after passing through the photorefractive crystal and the group velocity reduced to m/s, even cm/s. Meanwhile, we also analyse the influence of the thermal excitation rate and the large signal effects on optical amplification and reduction of light propagation in photorefractive two-wave mixing.
Based on Kukhtarev's equations, we derive the formulae of intensity-coupling coefficient, the phase-coupling coefficient and the group velocity at large modulation depth. It is theoretically shown that the signal beam can be amplified after passing through the photorefractive crystal and the group velocity reduced to m/s, even cm/s. Meanwhile, we also analyse the influence of the thermal excitation rate and the large signal effects on optical amplification and reduction of light propagation in photorefractive two-wave mixing.
基金
Supported by the National Natural Science Foundation of China under Grant Nos 60478014 and 60272075, and the Programme of Excellent Team of Harbin Institute of Technology.