期刊文献+

有限时滞Lienard方程Hopf分支的数值逼近

Hopf Bifurcation in Numerical Approximation for a Lienard Equation with Finite Delay
下载PDF
导出
摘要 研究了一类有限时滞的Lienard方程Hopf分支的数值逼近问题.首先,以滞量为参数,应用Cooke和J Hale的方法,得到Hopf分支存在的条件;然后,利用欧拉方法将得到的差分方程表示为映射,利用离散动力系统的分支理论,给出了差分方程Hopf分支存在的条件和连续系统与其数值逼近间的关系.证明了当该系统在r=r0产生Hopf分支时,其数值逼近也在相应的参数rh处具有Hopf分支,并且rh=r0+o(h). The numerical approximation of a Lienard equotion with finite delay is discussed. Firstly, regarding the delay as a parameter and employing the method of Cooke and J. Hale ,the conditions to the existence of Hopf bifurcation at some valus of the delay are given. Then ,the dalay deference equation obtained by using Euler method is written as a map. According to the theories of bifurcation for discrete dynamical systems,the conditions to the existence of Hopf bifurcation for numerical approximation are given. The relations of Hopf bifurcation between the continuous and the discrete are discussed. That when this model has Hopf bifurcation ,the numerical approximation also has Hopf bifurcation is proved.
出处 《石家庄学院学报》 2007年第6期22-25,共4页 Journal of Shijiazhuang University
关键词 LIENARD方程 欧拉方法 HOPF分支 数值逼近 Lienard equotion Euler method, Hopf bifurcation numerical approximation
  • 相关文献

参考文献2

二级参考文献4

  • 1赵杰民,黄克累,陆启韶.一类带有时滞的动力系统的几个定理与应用[J].应用数学学报,1995,18(3):422-428. 被引量:26
  • 2Hale J K.Introduction to Functional differential Equations[M].Berlin:Springer-Vedag,1993.227-268.
  • 3Guckenheimer J,Holmes P.Nonlinear oscillations,dynamical systems,and bifurcations of vector fields.Number 42 in applied mathematical sciences[M].Berlin:Springer-Vedag.1983.117~156.
  • 4魏俊杰,科学通报,1995年,40卷,1期,198页

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部