摘要
本文讨论一类不可观测ARMA过程{u1}参数的估计,基于N个可观测的样本值x1,x2,……,xN,其中xt=ut+δt,1≤t≤N,假设{δt}满足另一个ARMA方程,我们给出参数的最小方差估计量,并证明了这些估计量的强相容性。
This paper discusses the estimation of parameters of an unobservable ARMA process {ut}, on the basis of samples with N observables: x1, x2, ……,xN, where xt =ut+δt and 1≤t≤N, on the assumption that {δt} is satisfied by another ARMA pro- cess. We give the minimum variance estimators and then prove the strong consistence of these estimators.
出处
《汕头大学学报(自然科学版)》
1997年第2期1-11,共11页
Journal of Shantou University:Natural Science Edition
关键词
ARMA过程
参数估计
强相容性
最小方差估计
error-in-variable model
spectral density function
periodogram
mini- mum variance eatimator
strong coinsistent estimator