摘要
设A为nXn实对称矩阵,对于给定的j个线性无关列向量组成的n×j实矩阵Q,对任意j×j实矩阵T,记R(T)=AQ-QT。本文给出j×j实矩陈H,使||R(H),并证明当T取矩阵H时,文献[1]中P.122定理4.10的“”可以改变成“1”。
Let A be an nxn real symmetricmatrix. Suppose an nxj real matrix Q is com- posed of linearity-independent column vectors in a given number of j . For any jxj real matrix T , set R(T) =AQ -- QT . In this paper , a jxj real matrix H is found to be such that R(H)=min (T) Moreover, we have proved that the ' ' of theorem 4. 10 in [1] can be subtituted by ' 1' .
出处
《汕头大学学报(自然科学版)》
1997年第2期24-26,共3页
Journal of Shantou University:Natural Science Edition
关键词
LANCZOS算法
误差估计
对称矩阵
矩阵
real symmetry
characteristic value
2-norm
linearity-independent
orthogo- nality
strange value decomposition