期刊文献+

非Lipschitz条件下带跳倒向随机微分方程解的稳定性

A Stability Theorem of the Solutions to Backward Stochastic Differential Equations with Jumps under Non-Lipschitz Condition
下载PDF
导出
摘要 证明了带跳倒向随机微分方程列ytε=ξε+∫tTfε(s,ysε,zsε,vsε)ds-∫tTzsεdws-∫∫tTUvεs(z)N(ds,dz),ε≥0,t∈[0,T]在非Lipschitz条件下其解的稳定性;使用的主要工具是Bihari不等式的一个推论。 A stability theorem of the solutions is derived to the following backward stochastic differential equations with jumps ytε=ξε+∫tTfε(s,ysε,zsε,vsε)ds-∫tTzsεdws-∫∫tTUvεs(z)N(ds,dz),ε≥0,t∈[0,T] under non-Lipschitz condition and the main tool is a corollary of the Bihari inequality.
作者 任永 夏宁茂
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第3期441-444,共4页 Journal of East China University of Science and Technology
基金 安徽省教育厅自然科学基金(2006kj251B) 安徽师范大学科研专项基金(2006xzx08) 安徽师范大学青年科研基金(2006xqn49) 安徽师范大学博士科研启动资金资助
关键词 带跳倒向随机微分方程 稳定性 BIHARI不等式 backward stochastic differential equations with jumps stability Bihari inequality
  • 相关文献

参考文献10

  • 1Pardoux E,Peng S.Adapted solution of a backward stochastic differential equation[J].System and Control Letters,1990,14:55-61.
  • 2El Karoui N,Peng S,Quenez M C.Backward stochastic differential equation sand applications to optimal control[J].Mathematical Finance,1997,7:1-71.
  • 3Hu Y,Peng S.A stability theorem of backward stochastic differential equations and its applications[J].Paris:CRAS,serie Ⅰ,1997,324:1059-1064.
  • 4Mao X.Adapted solutions of backward stochastic differential equations with non-Lipschitz coefficients[J].Stochastic Processes and Their Applications,1995,58:281-292.
  • 5任永,秦衍.非Lipschitz条件下倒向随机微分方程解的稳定性[J].山东大学学报(理学版),2006,41(6):32-35. 被引量:1
  • 6Tang S,Li X.Necessary condition for optimal control of stochastic systems with random jumps[J].SIAM J Control Optim,1994,32:1447-1475.
  • 7Situ R.On solutions of backward stochastic differential equations with jumps and applications[J].Stochastic Processes and Their Applications,1997,66:209-236.
  • 8Situ R.Backward Stochastic Differential Equations With Jumps and Applications[M].Guangzhou:Guangdong Science and Technology Press,2000.
  • 9李娟.非Lipschitz条件下的带跳的倒向随机微分方程[J].山东大学学报(理学版),2003,38(3):10-14. 被引量:3
  • 10Bihari I.A generalization of a lemma of Bellman and its application to uniqueness problem of differential equations[J].Acta Math Acad Sci Hungar,1956,7:71-94.

二级参考文献12

  • 1E Pardoux, S Peng. Adapted Solution of a Backward Stochastic Differential Equation[ A]. Systems and Corarol Letters[ C], 1990, 14:55 -61.
  • 2Xuerong Mao. Adapted Solutions of BSDE with non-Lipschitz coefficients[J]. Stochastic processes and their Applications, 1955, 58:281 - 292.
  • 3S Tang, X Li. Necessary Condition for Optimal Control of Stochastic Systems with Random Jumps[J]. SIAM J. Control Optim., 1994,32:1447 - 1475.
  • 4G Barles, R Buckdahn,E Pardoux. BSDE's and Integral-Partial Differential Equations[J]. Stochastics, 1997, 60:57 - 83.
  • 5R Situ, On Solution of Backward stochastic differential equations with jumps and applicatiom[J], Stochastic Processes and their Applications, 1997, 66:209 - 236.
  • 6Zhen Wu. Forward-Backward Stochastic Differential Equations with B. M and Poisson Process[ J]. ACTA MATHEMATICAE APPLICATAE SINICA, 1999, 15(4) : 433 - 443.
  • 7N.Ikeda, S.Watanabe. Stochastic Differential Equations and Diffusion Processes[M], North Holland: Kodansha, 1981.
  • 8Pardoux E,Peng S.Adapted solution of a backward stochastic differential equation[J].System and Control Letters,1990,14:55 ~ 61.
  • 9El Karoui N,Peng S,Quenez M C.Backward stochastic differential equations and applications to optimal control[J].Mathematical Finance,1997,7:1~71.
  • 10Ying H,Peng S.A stability theorem of backward stochastic differential equations and its application[J].Paris:C R A S,Serie 1,1997,324:1 059 ~ 1 064.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部