摘要
R4中具有常数量曲率R=0及常中曲率H≠0的完备连通超曲面是否只有S1(1|H|)×R2?这一问题虽然已有讨论但事实上并没有得到彻底解决.本文证明了一个定理。
Is S 1(1|H|)×R 2 the only hypersurfaces in R 4 with scalar curvature R=0 and constant mean curvature H≠0? This question has been discussed but not solved completely.In the present paper,we prove a theorem which answers affirmatively the above question.
出处
《河南师范大学学报(自然科学版)》
CAS
CSCD
1997年第1期1-5,共5页
Journal of Henan Normal University(Natural Science Edition)
基金
河南省科委资助
关键词
中曲率
超曲面
常数量曲率
完备超曲面
hypersurfaces
scalar curvature
mean curvature
generalized maximal principle