期刊文献+

基于2维保局投影的人脸识别 被引量:7

Face Recognition Based on Two-dimensional Locality Preserving Projections
下载PDF
导出
摘要 特征提取是人脸识别的一个重要研究领域,能否有效地提取判别特征是决定人脸识别算法好坏的关键。一般的人脸识别算法都是基于图像向量的,需要将2维人脸图像压缩成1维向量,这不仅破坏了像素之间原有的空间结构关系,而且转换后的向量维数过高。为了避免这种情况,提出了一种直接基于图像矩阵的人脸识别算法——2维保局投影算法。由于该算法是在保局投影的基础上进行扩展,使其可以直接面向2维图像矩阵进行处理,同时在构建相似矩阵的时候引入了样本类别信息,因而可有效地提取人脸图片的2维判别特征。另外还采用最小近邻分类器估算识别率。在AT&T人脸库的实验结果表明,与Eigenface、Fisherface以及Laplacianface算法相比,该方法具有较好的识别率。 Feature extraction is an important step of face recognition. To extract discriminant feature effectively is the key point for a good face recognition algorithm. Normally the face recognition algorithm is based on the image vector which is converted from the image matrix. A new face image feature extraction and recognition method based on two-dimensional locality preserving projections(2DLPP) was proposed in this paper. 2DLPP works directly with images in their native state- two dimensional matrices, and extracts the two-dimensional discriminant feature of face for recognition based on both the face manifolalocal structure information and the labels' information. The proposed method was tested and evaluated with the AT&T face database, where the nearest neighborhood(NN) algorithm was used to construct classifiers, and the experimental results show that 2DLPP is more powerful than the PCA, LDA and LPP for face feature extraction and recognition.
作者 祝磊 朱善安
出处 《中国图象图形学报》 CSCD 北大核心 2007年第11期2043-2047,共5页 Journal of Image and Graphics
关键词 保局投影 2维保局投影 有监督学习 流形学习 人脸识别 locality preserving projections (LPP) , two-dimensional locality preserving projections (2DLPP) , supervised learning, manifold learning, face recognition
  • 相关文献

参考文献14

  • 1Zhao W,Chellappa R,Phillips P J,et al.Face recognition:A literature survey[J].ACM Computing Surveys,2003,35(4):399-459.
  • 2Shakhnarovich G,Moghaddam B.Face Recognition in Subspaces[M].New York:Springer-Verlag,2004.
  • 3Turk M,Pentland A.Eigenfaces for recognition[J].Cognitive Neuroscience,1991,3(1):71-86.
  • 4Belhumeur P N,Hespanha J,PKriegman D J.Eigenfaces Vs.Fisherfaces:Recognition using class specific linear projection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):711-720.
  • 5Vapnik V.The Nature of Statistical Learning Theory[M].New York:Springer,1995.
  • 6Yang M H.Kernel Eigenfaces Vs.Kernel Fisherfaces:Face recognition using kernel methods[A].In:Proceedings of Fifth IEEE International Conference on Automatic Face and Gesture Recognition[C],Washington,DC,USA,2002:215-220.
  • 7Tenenbaum J B,De Silva V,Langford J C.A global geometric framework for nonlinear dimensionality reduction[J].Science,2000,290(5500):2319-2323.
  • 8Roweis S T,Saul L K.An Introduction to Locally Linear Embedding[R].AT&T,Laboratories,Cambridge University,Cambridge,UK,2000.
  • 9Shashua A,Levin A,Avidan S.Manifold pursuit:A new approach to appearance based recognition[A].In:Proceedings of 16th International Conference on Pattern Recognition[C],Quebec City,Canada,2002,3:590-594
  • 10Belkin M,Niyogi P.Laplacian eigenmaps and spectral techniques for embedding and clustering[A].In:Proceedings of Neural Information Processing Systems[C],Vancouver,Canada,2001:585-591.

同被引文献42

  • 1吴洪,卢汉清,马颂德.基于内容图像检索中相关反馈技术的回顾[J].计算机学报,2005,28(12):1969-1979. 被引量:52
  • 2邱兆文,庞俊彪,张田文,梁可.图像检索中基于二次距离的相关反馈[J].哈尔滨工业大学学报,2006,38(9):1582-1585. 被引量:1
  • 3鲁珂,赵继东,吴跃,何晓飞.基于保局投影的相关反馈算法[J].计算机辅助设计与图形学学报,2007,19(1):20-24. 被引量:8
  • 4于林森,张田文,张开越.图像检索中的相似性判别及索引方法综述[J].小型微型计算机系统,2007,28(2):356-360. 被引量:11
  • 5胡晓峰.战争模拟原理与系统[M].北京:国防大学出版社.2009.
  • 6焦李成,公茂果,王爽,等.自然计算、机器学习与图像理解前沿[M].第1版.西安:西安电子科技大学出版社,2008,8.
  • 7He X, Niyogi P. Locality Preserving Projections [C]// Proceedings of Advances in Neural Information Processing Systems 16. Cambridge, MA, USA: MIT Press, 2004. 153-160.
  • 8Wang J, Zhang B, Wang S, Qi M, Kong J. An adaptively weighted sub-pattern locality preserving projection for face recognition [J]. Journal of Network and Computer Applications (S 1084-8045), 2010 33(3): 323-332.
  • 9Chen C, Chang Y, Ricanek K, Wang Y. Face age estimation using model selection [C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops(CVPRW). San Francisco, CA, USA: IEEE Computer Society, 2010: 93-99.
  • 10许相莉.基于智能计算的图像检索算法研究[D].长春:吉林大学.2011.

引证文献7

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部