期刊文献+

Zeilberger算法、Petkovek算法与一类组合和是否有闭形式的问题 被引量:1

ZEILBERGER'S ALGORITHM,PETKOVEK'S ALGORITHM AND THE PROBLEM WHETHER A KIND OF COMBINATORIAL SUM HAS A CLOSED FORM
下载PDF
导出
摘要 提出研究形如fp,r,s,x(n)=∑ from k=0 to rn 〔pn k〕s xk的组合和的闭形式问题的Z-P方法,并利用此方法得到了如下结果:1)当s=1,p=2r时证明了对未定元x,∑ from k=0 to rn 〔2rn k〕xk无闭形式表示;2)对p、r、s及x取特定的值,借助计算机归纳出几个值得探索的猜测. The Z - P method is given to study the problem whether a kind of combinatorial fp,r,s,x(n)=^rn∑k=0(pn k)^s x^k has a closed form. By using this method, some results are obmined: 1 )when s = 1 ,p = 2r, it's proved that for an indeterminate x,^rn∑ k=0(2rn k)x^k has no closed form; 2) when p, r, s and x are given with some specific values, several conjectures, are obtained inductively,with the help of computer.
作者 陈奕俊
出处 《华南师范大学学报(自然科学版)》 CAS 2007年第3期27-36,共10页 Journal of South China Normal University(Natural Science Edition)
关键词 Zeilberger算法 Petkovsek算法 闭形式 Zeilberger's algorithm Petkovsek's algorithm closed form
  • 相关文献

参考文献12

  • 1EGORYCHEV G P.Integral Representation and the Computation of Combinatorial Sums[M].Rhode Island:Translations of Mathematical Monographs of AMS,Vol 59,1984.
  • 2PETKOVSEK M,WILF H S,ZEILBERGER D.A=B[M].Massachusetts:A K Peters Ltd,1996.
  • 3PETKOVSEK M,WILF H S.When can the sum of (1/p)th of the binomial coefficients has closed form?[J].Electronic Journal of Combinatorics,1997,4(2):251-257.
  • 4陈奕俊.WZ方法、积分表示与一类组合和的渐近估计问题[J].华南师范大学学报(自然科学版),2004,36(3):29-36. 被引量:4
  • 5ZEILBERGER D.Gauss's 2F1(1) cannot be generalized to 2F1(x)[J].J Comp Appl Math,1992,39:379-382.
  • 6ZEILBERGER D.Closed form (pun intended!)[J].Contemporary Mathematics,1993,143:579-607.
  • 7AMDERBERHAN T,ZEILBERGER D.Hypergeometric series acceleration via the WZ method[J].Elect J of Combin,1997,4(2):16-19.
  • 8ABRAMOV S A,PETKOVSEK M.D′Alembertian solutions of linear differential and difference equations[C]∥GIESBRECHT M.Proc ISSAC′94.New York:ACM Press,1994:169-174.
  • 9MCINTOSH R J.Recurrences for alternating sums of powers of binomial coefficients[J].Journal of Combinatorial theory SeriesA,1993,63:223-233.
  • 10GOULD H W.Sums of powers of binomial coefficients via Legendre polynomial[J].Combinatorica,2004,73:33-43.

二级参考文献15

  • 1PETKOVSEK M, WILFH S, ZEILBERGER D. A=B[M]. Massachusetts: A K Peters Wellesley,1996.
  • 2PETKOVsEK M, WILF H S. When can the sum of (1/p) th of the binomial coefficients has closed form? [J].Electronic Journal of Combinatorics, 1997,4(2): 1- 7.
  • 3PAULE P, SCHORN M. A mathematica version of Zeilberger's algorithm for proving binomial coefficient identities[J]. J Symbolic Computation, 1995,20:673-698.
  • 4GRAHAM R L, KNUTH D E, PATASHNIK O. Concrete Mathematics[M]. Massachusetts: Addison Wesley , 1994.
  • 5EGORYCHEV G P. Integral representation and the computation of combinatorialsums[A]. In: Translations of Mathematical Monographs of AMS(Volume 59)[M]. Rhode Island: AMS, 1984.
  • 6GOOD I J. Saddle- point methods for the multinomial distribution[J]. Ann Math Statist, 1957, 28:861- 881.
  • 7Chen Y. J., Zeilberger's algorithm, Petkovsek's algorithm and the problem whether a kind of combinatorial sum have closed form, Journal of South China Normal University (Natural Science Edition), to appear
  • 8Petkovsek M., Wilf H. S., Zeilberger D., A = B,,AK Peters Ltd., M. assachusetts: Wellesley, 1996.
  • 9Petkovgek M., Will H. S., When can the sum of (1/p)th of the binomial coefficients have closed form, Electronic Journal of Combinatorics, 1997, 2: #R21.
  • 10Chen Y. J., WZ-method, integral representation and the problem of asymptotic estimates for a kind of combinatorial sum, Journal of South China Normal University (Natural Science Edition), 2004, 3:29 36

共引文献3

同被引文献15

  • 1陈奕俊.WZ方法、积分表示与一类组合和的渐近估计问题[J].华南师范大学学报(自然科学版),2004,36(3):29-36. 被引量:4
  • 2陈奕俊.Gosper算法与一类组合和是否有闭形式的问题[J].数学学报(中文版),2007,50(4):831-840. 被引量:2
  • 3PETKOVSEK M,WILF H S, ZEILBERGER D. A =B [M]. Massachusetts:A K Peters Ltd,1996.
  • 4WILF H S, ZEILBERGER D. Rational functions certify combinatorial identities[ J]. J Amer Math Soc, 1990, 3 : 147 - 158.
  • 5GESSEL I. Finding identities with the WZ method[ J]. J Symbolic Comput, 1995,70:537 -566.
  • 6ZEILBERGER D. Closed form ( Pun intended ! ) [ J ]. Contemp Math, 1993,143:579 - 607.
  • 7AMDEBERHAN T. Faster and faster convergent series for [ J]. Electron J Combin, 1996,3( 1 ) :#R13.
  • 8AMDEBERHAN T,ZEILBERGER D. Hypergeometric series acceleration via the WZ method [ J]. Electron J Combin, 1997,4 (2) :#R3.
  • 9EKAHD S B, ZEILBERGER D. A WZ Proof of Ramanujan's formula for π [C] ffRASSIAS J M. Geometry, Analysis and Mechanic. Singapore: World Scientific, 1994.
  • 10GUILLERA J. Some binomial series obtained by the WZ- method [ J]. Adv in Appl Math, 2002,29:599 - 603.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部