期刊文献+

超线性二阶微分系统多重正解的存在性 被引量:1

The Existence and Multiplicity of Positive Solutions for Second-Order Differential Systems
下载PDF
导出
摘要 目的研究在超线性条件下,p Laplacian二阶算子系统正解的存在性和多解性问题.方法应用锥上不动点理论,从引理出发,通过理论分析和抽象证明来推导新的结果.结果特殊条件下p Laplacian算子方程存在两个不动点,并给出了新的定理,即在零点和无穷远点同时满足超线性条件时,p Laplacian二阶算子系统存在两个正解.结论笔者的研究方法与分析结果为p Laplacian算子方程正解的存在性及多解性进一步分析提供条件. Special existence and multiplicity of positive solutions for second-order operator system is studied, under superlinear conditions. Applying fixed point cone theory, a kind of new result is analyzed and deduced from lemma. The result of existing two fixedpoint under special condition is obtained, that is to say Second -Order Differential Systems exist tow nonnegative solutions, if superlinear conditions are satisfied in zero point and infinitely- distant point. New theorem is proposed. It can be used to offer further analysis for p- Laplacian operator equation.
出处 《沈阳建筑大学学报(自然科学版)》 CAS 2007年第6期1053-1056,共4页 Journal of Shenyang Jianzhu University:Natural Science
基金 国家自然基金项目(60574011)
关键词 p_Laplacian算子 不动点 正解 p_ Laplacian operator cone fixed point positive solutions
  • 相关文献

参考文献9

二级参考文献21

  • 1杨作东.一类奇异二阶非线性方程两点边值问题正解存在性[J].应用数学和力学,1996,17(5):445-454. 被引量:2
  • 2Wong Fuhsiang,Appl Math Lett,1999年,12卷,11页
  • 3Henderson J,J Math Anal Appl,1997年,208卷,252页
  • 4Guo Dainn,非线性常微分方程泛函方法,1995年
  • 5Erbe L H,J Math Anal Appl,1994年,184卷,640页
  • 6Erbe L H,Proc Am Math Soc,1994年,120卷,3期,743页
  • 7Fink A M, Gatica J A. Positive solutions of second order systems of boundary value problems [ J]. J Math Anal Appl, 1993, 180: 93 ~108.
  • 8Gupta C P. A sharper condition for the solvability of a three-point second-order boundary value problem[ J ]. J Math Anal Appl, 1997,205(2) :586 ~ 597.
  • 9Ma R Y. Existenec theormems for a second order m-point boundary value problem[J]. J Math Anal Appl,1997,211(2) :545 ~ 555.
  • 10Feng W, Webb S R L. Solvability of a m-point boundary value problem with nonlinear growth[J]. J Math Anal Appl,1997,212(2) :467~ 480.

共引文献57

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部