摘要
设G为有限群,l是一个正整数,|Ml(G)|是G的l阶元素的集合,k表示G中元素的最高阶。特别地|M(G)|=|Mk(G)|。讨论了群的最高阶元素个数为|M(G)|=76p的有限群,得到了如下定理:设G是最高阶元素个数为76p的有限群,其中素数p>5,则G可解。
Let G be a finite group, l is a positive and |Ml(G)| denotes the set of elements of order l. k is the largest order of elements of G. Especially |M(G)| = |Mk(G)| The finte groups with 76p elements of maximal order were discussed, and a theorem was gotten as follows: Suppose G is a finite group with |M(G)| = 76p elements of maximal order, where p is a prime and p 〉 5, then G is solvable.
出处
《重庆大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2007年第11期92-95,共4页
Journal of Chongqing University
基金
国家自然科学基金资助项目(10171074)
重庆教育学院一般项目(200724)
关键词
有限群
可解群
元素的阶
m-型
finite groups
solvable groups
order of elements
m-type