期刊文献+

蜂窝夹芯圆环的拓扑优化设计及尺度效应研究 被引量:5

INTEGRATED TOPOLOGY OPTIMIZATION AND SCALE EFFECT ANALYSIS OF CYCLIC SYMMETRY SANDWICH STRUCTURES
下载PDF
导出
摘要 采用尺度关联的一体化设计方法开展了旋转周期圆环结构的拓扑优化设计研究,以宏观结构的最大刚度为目标,研究了材料表征体胞尺度、构型以及不同载荷作用形式对蜂窝夹芯圆环结构优化结果的影响.所提出的无量纲结构构型因子实现了优化结构的结构效率量化评估.结合SIMP材料模型和周长控制方法,实现了宏观结构和细观表征体胞的优化设计,获得清晰的材料分布.数值算例表明,尺度关联的一体化设计方法能有效地完成圆环结构的拓扑优化设计,设计结果充分反映体胞尺度效应对旋转周期圆环结构夹芯构型的影响. A scale-related optimization method is proposed for the topology design of cyclic symmetry structures. With the objective of maximizing the structural rigidity, the influences of the scale and topology of representative volume element (RVE) as well as different loading cases upon the optimal configurations are studied. A dimensionless structure topology factor is proposed to quantify the structure optimization efficiency. By means of the model of solid isotropic material with penalization (SIMP) and the perimeter control method, the macro material layout and RVE are optimized. A clear topology configuration is obtained without checkerboard. The results demonstrate that the scale-related topology optimization method is valid for optimal design of cyclic symmetry structure and that the scale effect of RVE can be well revealed in the optimal configuration of the structure.
出处 《力学学报》 EI CSCD 北大核心 2007年第6期788-795,共8页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金(10676028 90405016) 航空科学基金(04853080 2006ZA53006) 973计划(2006CB601205) 博士点基金(20060699006) 南昌航空大学科研启动基金(EA200703093) 863计划(2006AA042122) 高等学校学科创新引智计划(B07050)资助项目.~~
关键词 拓扑优化 尺度效应 结构构型因子 旋转周期结构 表征体胞 topology optimization, scale effect, structure topology factor, cyclic symmetry structure, representative volume element
  • 相关文献

参考文献5

二级参考文献67

  • 1魏悦广,白以龙,王学峥,武晓雷.Theoretical and experimental researches of size effect in micro-indentation test[J].Science China Mathematics,2001,44(1):74-82. 被引量:9
  • 2Hill R. A self-consistent mechanics of composite materials.J Mech Phys Solids, 1965, 13:213~222
  • 3Suquet PM. Elements of homogenization of inelastic solid mechanics. In: Sanchez PE, Zaoui A eds. Homogenization Techniques for Composite Media, Berlin: Springer-Verlag,1987. 194~275
  • 4Ghosh S, Moorthy S. Elasto-plastic analysis of arbitrary heterogenous materials with the Voronoi-Cell Finite Element Method. Comp Meth Appl Mech Engng, 1995, 121:373~409
  • 5Costanzo F, Boyd JG, Allen DH. Micromechanics and homogenization of inelastic composite materials with growing cracks. J Mech Phys Solids, 1996, 44:333~370
  • 6Zhang HW, Schrefler BA. Global constitutive behaviour of periodic assemblies of inelastic bodies in contact. Mechanics of Composite Materials and Structures, 2000, 7(4):355~382
  • 7Dvorak GJ, Zhang J. Transformation field analysis of damage evolution in composite materials. Journal of Mechanic and Physics of Solids, 2001, 49(11): 2517~2541
  • 8中科院北京力学研究所.夹层板壳的弯曲稳定和振动[M].北京:科学出版社,1977..
  • 9A E Simone, L J Gibson. Efficient structural components using porous metals [J]. Materials Science and Engineering A, 1997, 229: 55-62.
  • 10S Barlag, H Rothert. An idealization concept for the stability analysis of ring-reinforced cylindrical shells under external pressure [J]. International Journal of Non-Linear Mechanics, 2002, 37: 745-756.

共引文献60

同被引文献41

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部