期刊文献+

具有连续预防接种的双线性传染率SIQR流行病模型 被引量:10

SIQR epidemical model with continuous vaccinal immunity and bilinear incidence rates
下载PDF
导出
摘要 研究了一类具有预防接种免疫力的SIQR流行病模型全局稳定性.找到了决定疾病绝灭和持续生存的阈值——基本再生数σ.利用线性化和Liapunov-Lasalle不变集的方法,得到了各类评点的稳定性结论,揭示了染病期、隔离项和接种对疾病发展趋势的共同影响. The global stability of SIQR epidemiological model with continuous vaccinal immunity and bilinear incidence rates is discussed. The reproduction number for the model is found, which determines the existence of the infective disease. By means of linearization and Liapunov-Lasalle invaicant set theorem,the stable results of various equilibriums are obtained. The joint influences of quarantine period, infected period, and vaccinal immunity on the disease are exposed.
出处 《上海理工大学学报》 EI CAS 北大核心 2007年第2期113-116,共4页 Journal of University of Shanghai For Science and Technology
关键词 流行病模型 基本再生数 平衡点 全局渐近稳定性 epidemical model basic reproduction number equilibrium global stability
  • 相关文献

参考文献5

二级参考文献15

  • 1Hethcote H W. Qualitative analyses of communicable disease models [ J ]. Math Biosci, 1976,28 (3) : 335 - 356.
  • 2Hethcote H W, Gao L Q. Disease transmission models with density -dependent demographics [ J]. J Math Biol, 1992,30(6) :717 -731.
  • 3Feng Z, Thieme H R. Recurrent outbreaks of childhood disease revisited: The impact of isolation [J]. Math Biosci, 1995,128(2) : 93 - 130.
  • 4Feng Z, Thieme H R Endemic with arbitrarily distributed periods of infection, I : General theory [ J ]. SlAM J Appl Math,2000,61(7) : 803 -833.
  • 5Feng Z, Thieme H R. Endemic models with arbitrarily distributed periods of infection, Ⅱ : Fast disease dynamics and permanent recovery [J]. SIAM J Appl Math, 2000,61(8) :983 -1012.
  • 6Lasalle J P. The stability of dynamical systems. Regional conference series Applied Mathematics [ M]. SIAM: Philadelphia,1976.
  • 7Anderson R M, May R M. Population biology of infectious diseases [ J]. Nature, 1979; 180: 361 - 367.
  • 8Mena-lorca J, Hethcote H W. Dynamic models of infcefious diseases as regulations of population sizes[J]. J Math Biol, 1992 ;30:693 - 716.
  • 9Gao L Q, Hethcote H W. Disease transmission models with densitydependent demographics[J]. J Math Biol,1992;30:717 - 731.
  • 10Greenhalgh D. Hopf bifurcation in epidemic models with a latent period and nonpermanent immunity[J]. Math Comput Modeling, 1997;25(2) :85 - 107.

共引文献22

同被引文献45

引证文献10

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部