期刊文献+

Boussinesq方程组的行波解研究

Study on bifurcations of traveling wave solutions of Boussinesq equation
下载PDF
导出
摘要 运用动力系统定性理论,提出一种分析非线性系统解的方法.并以Boussinesq方程为例,避免了求解的繁琐过程,得到解的几何特性.分析结果表明,在一定参数条件下,Boussinesq方程的相图中存在孤波、扭结波以及周期波. By using the qualitative theory of dynamical systems, a method is advanced to analyze the solutions of the non- linear systems. Appling this method to Boussinesq equations, the geometry shapes of the equation solutions are obtained, and the fussy process of solving equations is avoided. It is also found that under certain parametrieal conditions, different phase portraits of Boussinesq equations exist, including bifurcations of solitary waves, kink waves and periodic waves.
出处 《上海理工大学学报》 EI CAS 北大核心 2007年第2期125-128,共4页 Journal of University of Shanghai For Science and Technology
基金 国家自然科学基金资助项目(70471066) 上海市重点学科建设资助项目(T0502)
关键词 孤立行波解 周期行波解 波的光滑性 BOUSSINESQ方程 solitary travelling wave solution periodic travelling wave solution smoothness of waves Boussinesq equations
  • 相关文献

参考文献7

  • 1锁要红,黄虎.多孔介质海底上波浪伴流传播的数值模拟[J].自然科学进展,2005,15(4):499-503. 被引量:1
  • 2王本龙,刘桦.一种适用于非均匀地形的高阶Boussinesq水波模型[J].应用数学和力学,2005,26(6):714-722. 被引量:39
  • 3LI Jibin,LI Hong.Bifurcations of travelling wave solutions for the generalized Kadomtsev-Petviashili equation[J].Chaos Solitons & Fractals,2004,20(4):725-734.
  • 4LI Jibin,LIU Zheng-rong.Smooth and non-smooth traveling waves in a nonlinearly dispersive equation[J].Appl Math Modelling,2000,25:41-56.
  • 5CHOW S N,HALE J K.Method of Bifurcation Theory[M].New York:Springer-Verlag,1981:23-58.
  • 6GUCKENHEIMER J,HOLMES P J.NONLINEAR O.Dynamical Systems and Bifurcations of Vector Fields[M].New York:Springer-Verlag,1983:15-46.
  • 7PERKO L.Differential Equations and Dynamical Systems[M].New York:Springer-Verlag,1991:36-98.

二级参考文献14

  • 1锁要红,黄虎.任意水深多孔介质海底上的线性波流相互作用[J].自然科学进展,2004,14(7):815-818. 被引量:2
  • 2锁要红,黄虎.A General Linear Wave Theory for Water Waves Propagating over Uneven Porous Bottoms[J].海洋工程:英文版,2004,18(1):163-171. 被引量:1
  • 3Kristensen M K. Boussinesq equations and wave-current interaction[ D ]. Master ' s thesis. International Research Center for Computed Hydrodynamics (ICCH) at Danish Hydraulic Institute, Denmark and ISVA,Technical University of Denmark, 1995,130-142.
  • 4Madsen P A, Bingham H B, Liu H. A new Boussinesq method for fully nonlinear waves from shallow to deep water[ J ] . J Fluid Mech,2002, (462): 1-30.
  • 5Wu T Y. A unified theory for modeling water waves[ A ] . In: Advances in Applied Mechanics [ C ] .Boston:Academic Press,2000,37: 1-88.
  • 6Booij N.A note on the accuracy of the mild-slope equation[ J ]. Coastal Engineering, 1983,7 (2):191-203.
  • 7Suh K D, Lee C, Park W S. Time-dependent equations for wave propagation on rapidly varying topography[J]. Coastal Engineering, 1997,32(2/3):91-117.
  • 8Chen Q, Madsen P A. Schaffer H A, et al. Wave-current interaction based on an enhanced Boussinesq approach[ J]. Coastal Engineering, 1998,33( 1 ): 11-39.
  • 9Agnon Y, Madsen P A, Schaffer H A. A new approach to high order Boussinesq models[ J]. J Fluid Mech, 1999, (399) :319-333.
  • 10Madsen P A, Schaffer H A. Higher-order Boussinesq-type equations for surface gravity waves: derivation and analysis[J]. Phil Trans Roy Soc, London A, 1998, (356) :3123-3184.

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部