摘要
运用动力系统定性理论,提出一种分析非线性系统解的方法.并以Boussinesq方程为例,避免了求解的繁琐过程,得到解的几何特性.分析结果表明,在一定参数条件下,Boussinesq方程的相图中存在孤波、扭结波以及周期波.
By using the qualitative theory of dynamical systems, a method is advanced to analyze the solutions of the non- linear systems. Appling this method to Boussinesq equations, the geometry shapes of the equation solutions are obtained, and the fussy process of solving equations is avoided. It is also found that under certain parametrieal conditions, different phase portraits of Boussinesq equations exist, including bifurcations of solitary waves, kink waves and periodic waves.
出处
《上海理工大学学报》
EI
CAS
北大核心
2007年第2期125-128,共4页
Journal of University of Shanghai For Science and Technology
基金
国家自然科学基金资助项目(70471066)
上海市重点学科建设资助项目(T0502)
关键词
孤立行波解
周期行波解
波的光滑性
BOUSSINESQ方程
solitary travelling wave solution
periodic travelling wave solution
smoothness of waves
Boussinesq equations