期刊文献+

模糊基函数神经网络在线跟踪自学习算法研究 被引量:3

Research on An On-line Tracking Self-learning Algorithm for Fuzzy Basis Function Neural Network
下载PDF
导出
摘要 提出了一种用于分类的模糊基函数(FBF)神经网络在线跟踪自学习算法,通过带有遗忘因子的样本均值和样本协方差矩阵,保存了原始样本所包含的类可能性分布信息,并在此基础上产生新增样本的目标输出用于训练FBF网络,以实现分类边界的在线跟踪;给出了带有遗忘因子的样本均值和样本协方差矩阵的递推算法,以克服传统方法需要保存大量以往训练样本带来的困难。所提出的方法用于旋转机械的故障识别,结果表明是可行的和有效的。 An on-line tracking self-learning algorithm for fuzzy basis function (FBF) neural network classifier is proposed in this paper. Based on the previous possibility distribution of the clusters, which is kept within the sample mean and covariance matrix with forgetting factor, a strategy for constructing the target output of the new training sample set is given. With the new sample set the FBF network can be trained to track the variable clustering boundary. Meanwhile, a recursive algorithm for computing the sample mean and covariance matrix with forgetting factor is also proposed to overcome the difficult of storing the vast old training samples. The proposed method is used for fault recognition of the rotating machinery, and the results show that it is feasible and effective.
出处 《中国工程科学》 2007年第11期48-53,共6页 Strategic Study of CAE
基金 "八六三"高技术研究发展计划资助项目(2001AA423240)
关键词 模糊基函数 自学习 故障诊断 fuzzy basis function self-learning fault diagnosis
  • 相关文献

参考文献7

  • 1Fuessel D,Isermann R.Hierarchical motor diagnosis utilizing structural knowledge and a self-learning neuro-fuzzy scheme[J].IEEE Trans on Industrial Electronics,2000,47(5):1070-1077
  • 2戈志华,牛玉广,李如翔,宋之平.汽轮发电机组振动故障诊断系统自学习的研究[J].中国电机工程学报,2000,20(5):76-79. 被引量:13
  • 3French R M.Catastrophic forgetting in connectionist networks[J].Trends Cognitive Sci,1999,3(4):128 -135
  • 4Wang L X,Mendel J M.Fuzzy basis functions,universal approximation,and orthogonal least-squares learning[J].IEEE Trans on NNs,1992; 3(5):807 -814
  • 5刘慧林,冯汝鹏,胡瑞栋,刘春华.模糊系统作为通用逼近器的10年历程[J].控制与决策,2004,19(4):367-371. 被引量:6
  • 6Haykin S.Neural Networks:A Comprehensive Foundation (second edition,影印版)[M].北京:清华大学出版社,2001.256 - 317
  • 7Karayiannis N B,Bezdek J C,Pal N R,et al.Repairs to GLVQ:a new family of competitive learning schemes[J].IEEE Trans on Neural Networks,1996,7(5):1062 -1071

二级参考文献40

  • 1[1]Zadeh L A. Fuzzy sets[J]. Information and Control,1965,8(2):338-353.
  • 2[2]Wang L X. Fuzzy Systems are universal approximators[A]. Proc IEEE Int Conf Fuzzy Systems[C].1992.1163-1170.
  • 3[3]Kosko B. Fuzzy systems as universal approximators[A]. Proc IEEE Int Conf Fuzzy Systems[C].1992.1153-1162.
  • 4[4]Ying M S. Implication operators in fuzzy logic[J]. IEEE Trans on Fuzzy systems,2002,10(1):88-91.
  • 5[5]Lee C-C. Fuzzy logic in control systems: Fuzzy logic controller-Part I,II[J]. IEEE Trans on Systems, Man and Cybernetics,1990,20(2):404-435.
  • 6[6]Filev D P, Yager R R. A generalized defuzzification method via BAD distributoins[J]. Int J of Intelligent Systems,1991,6(4):687-697.
  • 7[7]Wang L X. Universal approximation by hierarchical fuzzy systems[J]. Fuzzy Sets and Systems,1998,93(2):223-230.
  • 8[8]Dickerson J A, Kosko B. Fuzzy function approximation with ellipsoidal rules[J].IEEE Trans on Syst, Man and Cybernetics,1996,26(4):542-560.
  • 9[9]Buckley J J. Universal fuzzy controllers[J]. Automa-tica,1992,28(6):1245-1248.
  • 10[10]Buckley J J. Sugeno type controllers are universal controllers[J].Fuzzy Sets and Systems,1993,53(3):293-303.

共引文献17

同被引文献45

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部