期刊文献+

用小波包变换广义回归神经网络法处理硝基苯胺异构体重叠紫外吸收光谱 被引量:2

Processing of Overlapping Ultraviolet Absorption Spectra of Nitroaniline Isomers Using a Wavelet Packet Transform Based Generalized Regression Neural Network
下载PDF
导出
摘要 开发了一种小波包变换广义回归神经网络(WPTGRNN)法,用于处理对硝基苯胺、邻硝基苯胺和间硝基苯胺重叠的紫外吸收光谱,达到不经预先化学分离进行同时测定的目的。WPTGRNN法结合小波包变换和广义回归神经网络(GRNN)的特点,改进除噪质量和预测能力。通过最佳化实验,选择了小波函数、小波包分解水平及GRNN的平滑因子。实验结果表明,WPTGRNN法的预测标准误差为1.08μg/mL,预测相对标准误差为4.20%,与小波变换广义回归神经网络、广义回归神经网络和主组分回归3种方法进行比较,WPTGRNN法优于其他3种方法。 A wavelet packet transform based generalized regression neural network (WPTGRNN) was developed to process overlapping ultraviolet absorption spectra of p -nitroaniline, o -nitroaniline and m -nitroaniline. The determination was simultaneously carded out without any chemical separation steps in advance. This method combines wavelet packet transform with generalized regression neural network (GRNN) for improving quality of denoise and enhancing its ability of prediction. By optimization, wavelet function, decomposition level and smoothing factor of GRNN were selected. Experimental results showed standard error prediction and relative standard error prediction of WPTGRNN methods are 1.08 μg/mL and 4.20%, respectively. The WPTGRNN method performed better than other three, namely wavelet transform GRNN, GRNN and principal component regression.
出处 《石油化工》 EI CAS CSCD 北大核心 2007年第11期1168-1171,共4页 Petrochemical Technology
基金 国家自然科学基金资助项目(20667002) 内蒙古自然科学基金资助项目(200408020210)
关键词 小波包变换广义回归神经网络 小波包除噪 紫外吸收光谱 硝基苯胺 wavelet packet transform based generalized regression neural network denoise with wavelet packet transform ultraviolet absorption spectrum nitroaniline
  • 相关文献

参考文献12

  • 1周文敏,傅德黔,孙宗光.水中优先控制污染物黑名单[J].中国环境监测,1990,6(4):1-3. 被引量:317
  • 2高玲,任守信.Elman回归神经网络研究同时定量分析紫外重叠光谱[J].石油化工,2004,33(3):266-269. 被引量:6
  • 3Shao Xuguang, Wang Fang, Chen Da, et al. A Method for Nearinfrared Spectral Calibration of Complex Plant Samples with Wavelet Transform and Elimination of Uniformative Variables. Anal Bioanal Chem, 2004,378(5) :1 382 -1 387
  • 4Shao Xuguang, Wang Wei, Hou Zhenyu, et al. A New Regression Method Based on Independent Component Analysis. Talanta, 2006, 69(3) :676 -680
  • 5Ni Yongnia, Qiu Ping, Kokot Serge. Simultaneous Voltammetric Determination of Four Carbamate Pesticides with the Use of Chemometrics. Anal Chim Acta, 2005, 537( 1 -2) :321 -330
  • 6Chen Guoxiang, Harrington Peter de B. SIMPLISMA Applied to Two - Dimensional Wavelet Compressed Ion Mobility Spectrometry data. Anal Chim Acta, 2003, 484(1) : 75 -91
  • 7Palacios - Stantander J M, Cubillana - Aguilera L M, Naranjo - Rodriguez I, et al. A Chemometric Strategy Based on Peak Parameters to Resolve Overlapped Electrochemical Signals. Chemom Intell Lab Syst, 2007, 85( 1 ) :131 - 139
  • 8Bishop C M. Neural Networks for Pattern Recognition. Oxford: Clarendon Press, 1995.19
  • 9Kaikhan K, Garlick R. Variable Hidden Layer Sizing in Elman Recurrent Neuro - Evolution. Appl Intell, 2000, 12 (3) : 193 - 205
  • 10Zang Zhuoyong, Wang Dan, Harrington Peter de B, et al. Forward Selection Radial Basis Function Networks Applied to Bacterial Classification Based on MALDI - TOF - MS. Talanta, 2004, 63(3): 527 -532

二级参考文献6

  • 1[1]Despagne F,Massart D L.Neural Networks in Multivariate Calibration.Analyst,1998,123:157R~178R
  • 2[2]Rius A,Ruisanchea I,Callao M P,et al.Reliability of Analytical Systems:Use of Control Charts,Time Series Models and Recurrent Neural Networks(RNN).Chemom Intell Lab Syst,1998,40:1~18
  • 3[3]Elman J L.Finding Structure in Time.Cognit Sci,1990,14:179~211
  • 4[4]Gao Ling,Ren Shouxin.Simultaneous Spectrophotometric Determination of Manganese,Zinc and Cobalt by Kernel Least-Squares Method.J Automatic Chem,1998,20:179~183
  • 5[5]Ren Shouxin,Gao Ling.Simultaneous Quantitative Analysis of Overlapping Spectrophotometric Signals Using Wavelet Multi Resolution Analysis and Partial Least Squares.Talanta,2000,50:1 163~1 173
  • 6[6]Nguyen D,Widrow B.Improving the Learning Speed of 2-Layer Neural Network by Choosing Initial Values of Adaptive Weights.In:Proceeding of International Joint Conference of Neural Networks,IJCNN' 90,1990.21~26

共引文献321

同被引文献32

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部