期刊文献+

遗传算法求解多目标柔性Job-shop问题 被引量:1

Solving Multi-objective Flexible Job-shop Scheduling Problem with Genetic Algorithm
下载PDF
导出
摘要 本文描述了基于可变机器约束的多目标柔性Job-shop调度问题模型,并应用一种改进的遗传算法进行求解。我们采用了表示工序先后顺序及机器选择的二维编码方式,以多目标优化函数为度量,通过三种遗传操作扩展后代的多样性和算法的搜索空间。仿真结果验证了该算法能有效解决多目标优化问题。 The model of flexible job shop scheduling problem with alterable machines is described, and an improved GA scheduling approach is used to solve the problem.Two-dimensional encoding method represents the priority dispatching sequence and machines which are selected, multi-objective optimization functions are used as evaluation, and the three genetic operators can enlarge the population and search space. The effectiveness of the proposed algorithm is verified by computation results.
出处 《微计算机信息》 北大核心 2007年第33期163-165,共3页 Control & Automation
关键词 遗传算法 多目标柔性job-shop调度 可变机器 genetic algorithm, multi--objective flexible job-shop scheduling,alterable machines
  • 相关文献

参考文献3

  • 1Takeshi Yamada, Ryohei Nakana. Genetic algorithms for job-shop scheduling problems [A]. Proc of Modern Heuristic for Decision Support [C].London, 1997, 67-81.
  • 2Jose Fernando Goncalves,Jorge Jose de Magalhaes Mendes, Maurcio G C Resende. A hybrid genetic algorithm for the job shop scheduling problem [R].A T &T Labs Research, 2002.
  • 3初永丽.一种GA算法的改进及其实现[J].微计算机信息,2006,22(03S):128-129. 被引量:3

二级参考文献2

共引文献2

同被引文献7

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部